
Hunter
Using Change Point Detection to Hunt for Performance Regressions

Matt Fleming, Piotr Kołaczkowski, Ishita Kumar, Shaunak Das, Sean McCarthy,
Pushkala Pattabhiraman and Henrik Ingo

The Problems Hunter Solves

● Has performance of a software product changed?
● If so, which specific commit caused it?
● How big is the change?

● Can we make a new release?
● Can we merge the topic branch?

Hunter does that by analyzing performance test results we collect in our history server (currently
graphite).

2

3

Jenkins

Performance
Testing System

triggers
test run(s)

stores performance metrics

Grafana

Hunter

fetches data to
visualize

fetches data to analyze

annotates
graphs

notifies

in
iti

at
es

 a
na

ly
si

s

How Perf Regression Looks Like

4

Automatic Regression Detection on Many Tests

$ hunter regressions dse-68-smoke --since '6 weeks'
INFO: Fetching data from Graphite...
INFO: Computing change points for test dse68.read.inmem...
dse68.read.inmem:

p90 : 1.67e+07 --> 1.94e+07 (+16.2%)
p95 : 1.92e+07 --> 2.09e+07 (+8.9%)
p99 : 3.17e+07 --> 3.94e+07 (+24.1%)

INFO: Fetching data from Graphite...
INFO: Computing change points for test dse68.write.rf1...
dse68.write.rf1: OK
INFO: Fetching data from Graphite...
INFO: Computing change points for test dse68.write.rf3...
dse68.write.rf3: OK

5

Analyzing Runs of a Single Test

6

$ hunter analyze dse68.read.inmem --since '6 weeks'
INFO: Fetching data from Graphite...
INFO: Computing change points for test dse68.read.inmem...
dse68.read.inmem:
time run branch version commit throughput p50 p95 p99 p999
------------------------- -------- -------- --------- -- ---------- ---------- ---------- ---------- -----------
2021-06-21 00:00:00 +0000 0f9feaf0 6.8-dev 6.8.14 994d6b13d27966e295e455fa69fabd9f543348d7 729620 1.1854e+07 1.9431e+07 3.1982e+07 2.9465e+08
2021-06-23 00:00:00 +0000 4708838a 6.8-dev 6.8.14 f6ac4b3df6d6886980dbb565684804cbf5ecfaea 735225 1.1747e+07 1.9382e+07 3.1769e+07 3.00941e+08
2021-06-25 00:00:00 +0000 17cc6af0 6.8-dev 6.8.14 f6ac4b3df6d6886980dbb565684804cbf5ecfaea 718087 1.2157e+07 1.9612e+07 3.1441e+07 2.96747e+08
2021-06-28 00:00:00 +0000 f90509d8 6.8-dev 6.8.14 f6ac4b3df6d6886980dbb565684804cbf5ecfaea 734331 1.1788e+07 1.9186e+07 3.2637e+07 2.95698e+08
2021-07-02 00:00:00 +0000 80ba41c7 6.8-dev 6.8.15 d26bb81b11d7d574769d9244794b7b916131fa7b 712336 1.2182e+07 1.9841e+07 3.3358e+07 2.98058e+08
2021-07-05 00:00:00 +0000 71be7e61 6.8-dev 6.8.15 d26bb81b11d7d574769d9244794b7b916131fa7b 741089 1.1723e+07 1.912e+07 3.2375e+07 2.98058e+08
2021-07-07 00:00:00 +0000 05052811 6.8-dev 6.8.15 db4fef601dd487d8ca984e9b4d7a00d34bbd03c1 747922 1.151e+07 1.8727e+07 3.1506e+07 2.99893e+08
2021-07-09 00:00:00 +0000 64acc6e3 6.8-dev 6.8.15 bf99ebe8693172397afe48024e2de5ce67de1ceb 733456 1.187e+07 1.9202e+07 3.2014e+07 2.98582e+08
2021-07-12 00:00:00 +0000 5a2e5a31 6.8-dev 6.8.15 bf99ebe8693172397afe48024e2de5ce67de1ceb 711107 1.2198e+07 1.9874e+07 3.2915e+07 2.89669e+08
2021-07-14 00:00:00 +0000 7c1a02d8 6.8-dev 6.8.15 5c64641cbeeda8a5af88c30d0e92a9eb057d9fec 725253 1.1944e+07 1.9562e+07 3.3047e+07 2.97533e+08
2021-07-16 00:00:00 +0000 c30165d5 6.8-dev 6.8.15 5c64641cbeeda8a5af88c30d0e92a9eb057d9fec 736175 1.1747e+07 1.9104e+07 3.2571e+07 3.0933e+08
2021-07-19 00:00:00 +0000 a60027ff 6.8-dev 6.8.15 5c64641cbeeda8a5af88c30d0e92a9eb057d9fec 745808 1.1682e+07 1.8874e+07 2.8475e+07 3.00155e+08
2021-07-21 00:00:00 +0000 5e082428 6.8-dev 6.8.15 00e292f0fff12512835b281077750aa60b2c047c 713324 1.2009e+07 1.9759e+07 3.3423e+07 2.99893e+08
 ·········· ··········
 +8.3% +23.1%
 ·········· ··········
2021-07-23 00:00:00 +0000 15ce8e36 6.8-dev 6.8.15 00e292f0fff12512835b281077750aa60b2c047c 696331 1.2149e+07 2.0922e+07 3.9354e+07 3.08543e+08

regression found

Slack Notifications

7

Prior Work

The Use of Change Point Detection to Identify Software Performance Regressions in a Continuous
Integration System

David Daly, William Brown, Henrik Ingo, Jim O’Leary, and David Bradford.

In Proceedings of the 2020 ACM/SPEC International Conference on Performance Engineering (ICPE ’20)

https://github.com/mongodb/signal-processing-algorithms

8

E Divisive with Means – Basic Idea

9

time

m
et

ric
 v

al
ue

X
n points

Y
m points

Try all splits and maximize Q-hat

E Divisive with Means – Apply Recursively Top Down

10

time

m
et

ric
 v

al
ue

E Divisive with Means – Apply Recursively Top Down

11

time

m
et

ric
 v

al
ue

Stop Criterion

1. Permute the data points randomly N times
2. Compute max Q-hat for each permuted data set
3. If values computed in point 2 are not statistically different from Q-hat for the candidate split,

then reject the split and stop

12

Problems With The Original E-divisive

1. The algorithm fails to find change points in the middle of longer runs of data,
although it found them in shorter runs

2. The stop criterion is based on randomness – results not always repeatable
3. The stop criterion is costly to compute

13

Failure to Identify Some Change Points

14

A regression that was fixed quickly

window

Improvement: Moving Window

15

Limiting the amount of data processed at once reduces the risk
that valid change-points are considered noise

Improvement: Relax the Stop Condition

● Problem: The future splits may affect
statistical significance of the earlier
splits

● Use a weaker significance level to accept
more change-points and terminate the
recursion later

● Reevaluate change-points going
bottom-up

● Remove change-points if they turn
out to be not statistically significant

16

weaker significance

stronger significance

A

A B

Improvement: Welch's T-Test To Test Significance

● The stop criterion based on random permutations is:
● Non-deterministic
● Computationally intensive

● Solution: Use Welch's T-test (a variation of Student's T-test)
● Deterministic
● Very fast to compute
● Works with small sample sizes
● Not-robust, but distribution of data between change-points usually normal enough

● We also tried Mann-Whitney, but apparently the number of data points was sometimes too low

17

Evaluation

Creation of artificial Dataset:

● We employed Chaos Mesh to artificially generate network latency in the system under test to
obtain a real data set.

● We artificially injected real changes, at known points in time, into a real benchmark to produce
realistic results.

● We created 9 different scenarios by altering the values of variables such as the number of
changepoints, magnitude of change of variance between groups, magnitude of change between
groups, and the length of groups.

● The scenarios can be grouped into three categories: change in mean, change in variance, and
change in both mean and variance.

● Each scenario contains 5 test series, each with minor variation.

18

Evaluation

Evaluation Metrics:

1. True Positives :

2. F1 :
a. Precision :

b. Recall :

3. Rand Index :
a. TP : correctly predicts the positive class : True change points calculated
b. TN : correctly predicts the negative class : None in this case
c. FP : model incorrectly predicts positive class :
d. FN : :model incorrectly predicts negative class:

19

Results

Correlation to the number of points:

There is a positive correlation between the number of points and accuracy.

20

Results

Correlation between delta error and algorithms:

● Hunter is able to get an F1 score of 0.1481 with an delta error of one second, where PELT and
DYNP need a margin of error of at least 3 seconds to get a non-zero score.

● With a margin of error of 4 seconds we see that the performance increases to 0.612 for Hunter.
DYNP starts to catch up with Hunters accuracy at 15 seconds.

21

Thank You
https://github.com/datastax-labs/hunter

https://github.com/datastax/fallout

22

https://github.com/datastax-labs/hunter

