IMPLEMENTATION OF DATAFLOW SOFTWARE PIPELINING FOR CODELET MODEL

SIDDHISANKET RASKAR¹, JOSE MONSALVE DIAZ¹, THOMAS APPLENCOURT¹, KALYAN KUMARAN¹, GUANG GAO²

¹ARGONNE NATIONAL LABORATORY, LEMONT, IL, USA.
²UNIVERSITY OF DELWARE, NEWARK, DE, USA.
Software Pipelining is one of the most successful loop compilation technology in the exploitation of Instruction Level Parallelism.

- Instruction Level Parallelism
- Fine Grained
- Single Core

Loop: for (i=0 ; i < 3 ; i++)

s1: a[i] = a[i] + 1;
s2: b[i] = a[i] + 1;
s3: c[i] = b[i] + 1;
Fine Grained
Instruction Level Parallelism
Maximum Throughput is achieved with balancing using **FIFO Buffers**

Dataflow Software Pipelining is compile time as well as runtime technique.
The naturally available information about dependencies is used at runtime for scheduling.
Tokens from various iterations of the loop are executed.

Dataflow Software Pipelining
- 5 Nodes, each is an Instruction
- Assume each instruction takes 1 cycle.

Dataflow Software Pipelining is compile time as well as runtime technique.

The naturally available information about dependencies is used at runtime for scheduling.

Tokens from various iterations of the loop are executed.

• 5 Nodes, each is an Instruction
• Assume each instruction takes 1 cycle.
• Balanced graph using FIFO Buffer of Size 2

Rise of Many Core Architectures
Changes is Computer Architecture

Challenges to extend this for multiple cores
- Variability of instruction timing between cores
- Loop carried dependencies must be realized across different cores.
- Variable runtime traffic in the on-chip network.

https://www.alcf.anl.gov/alcf-ai-testbed
Motivation & Background
Problem Formulation
Solution Methodology
Cannons Algorithm Case Study
Experimental Evaluation
Future Work & Conclusions
Problem Formulation

How should the success of software pipelining & Dataflow Software Pipelining can be exploited under the new many core architecture era?

A model which will leverage coarse grain parallelism at Codelet graph level & fine grain parallelism at Codelet level.

```plaintext
for (i=0 ; i < 3 ; i++)
a[i] = i;
for (i=0 ; i < 3 ; i++)
b[i] = a[i] + 1;
```
Problem Formulation

How should the success of dataflow software pipelining be exploited in the many core architecture era?

Ø Extension to Codelet Model
 Ø Activity Model
 Ø Synchronization Model
Ø Extension to Codelet Abstract Machine to support efficient implementation of FIFO buffers

A programming model which will leverage coarse grain parallelism at Codelet graph level & fine grain parallelism at Codelet level.

Agenda

Motivation & Background

Problem Formulation

Solution Methodology

Cannons Algorithm Case Study

Experimental Evaluation

Future Work & Conclusions
Codelet Program Execution Model (PXM)

- **Activity Model**: Defines Parallel activities
- **Synchronization Model**: Defines interactions between activities
- **Memory Model**: Specifies addressing model, results of memory operations & memory state transition

Program Execution Model

Codelet Abstract Machine (CAM)

- **Node**: Interconnect
- **Chip**: Interconnect
- **Cluster**: Interconnect
- **SU**: Synchronization Unit
- **CU**: Compute Unit
- **DRAM**: DRAM
- **Out-of-cluster Communication**: Out-of-cluster Communication

Activity Model

Synchronization Model

Memory Model

SU : Synchronization Unit

CU : Compute Unit
Background

Codelet
- Sequentially Executed
- Atomically Scheduled
- Non-Preemptive

Threaded Procedure
- Collection of Codelets
- Shared input parameters
- Shared context & local variables

Codelet Graph
- Program representation
- Nodes -> Codelets
- Edges -> Dependencies

Activity Model

Codelet Model

Codelet States
- Dormant
- Enabled
- Ready
- Fire

Firing Rules
- A codelet becomes *enabled* once tokens are present on each of its input arcs.
- An enabled codelet can be *fired* if it has acquired all its required resource.
- A codelet fires by consuming tokens on its input arcs, performing the operations within the codelet, and producing a token on each of its output arcs.

Synchronization Model
Solution Methodology

Codelet Model

<table>
<thead>
<tr>
<th>Original Firing Rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>• A codelet becomes enabled once tokens are present on each of its input arcs.</td>
</tr>
<tr>
<td>• An enabled codelet can be fired if it has acquired all its required resource.</td>
</tr>
<tr>
<td>• A codelet fires by consuming tokens on its input arcs, performing the operations within the codelet, and producing a token on each of its output arcs.</td>
</tr>
</tbody>
</table>

| Consumer Codelet can **NOT** begin its execution while Producer Codelet is executing |
| When Producer finishes its entire execution and sends event or data to the Consumer Codelet then only Consumer codelet can begin. |

<table>
<thead>
<tr>
<th>Extended Firing Rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>• For certain class of Codelet Graphs, Codelets marked by programmer or compiler can enabled even though input tokens from all iterations are not yet present on its input arcs.</td>
</tr>
<tr>
<td>• These enabled codelets will fire as soon as tokens from some iterations are present on its input arcs.</td>
</tr>
</tbody>
</table>

| Consumer Codelet **CAN** begin its execution while Producer Codelet is executing |
| Tokens can stream from producer to consumer codelet |

L1 : For (1 to N)

\[A[i] = i \]

L2 : For (1 to N)

\[B[i] = A[i] + 1 \]
Why need to extend Codelet Model?

- HPC systems becoming more diverse, heterogeneous
 e.g. CPU, GPU, FPGA, ASIC
- Memory systems becoming more diverse
 e.g. Unified memory, Scratchpad memory, multiple levels of cache.

Codelet Core.

- Moving memory out of Codelet level core to hide latencies in memory operations.

Local Codelet Core Memory (LCCM)

- Efficient FIFO Buffers

Extended Codelet Abstract Machine Model (xCAM)

SU : Synchronization Unit
CU : Compute Unit
LCCM : Local Codelet Core Memory
Producer & Consumer Codelets -

- Execute *simultaneously* on the same *Codelet Core*

- Tokens *stream* continuously from Producer to Consumer via FIFO buffers

- FIFO buffers are mapped to *LCCM* for efficient execution.
Extended Codelet Model For Dataflow Software Pipelining

Solution Methodology

Extended Codelet Abstract Machine (xCAM)

Producer-Consumer Codelets in a CDG

Codelet Graph (CDG)

SU: Synchronization Unit
CU: Compute Unit
LCCM: Local Codelet Core Memory
Agenda

- Motivation & Background
- Problem Formulation
- Solution Methodology
- Cannons Algorithm Case Study
- Experimental Evaluation
- Future Work & Conclusions
Cannons Algorithm under DARTS

Case Study

Cannons Algorithm

- **Matrix Multiplication** is important kernel behind many scientific as well for Machine Learning application domain.

- Over lapping of *computation* and *communication* phase gives opportunity to demonstrate advantage of dataflow software pipelining techniques.

- Satisfies our specification for the class of codelet graph both at Codelet Graphs level & Codelet level.

Delaware Adaptive Run-Time System (DARTS)

- Implementation of the Codelet Model on x86.
- Open Source, Written in C++, 42000 lines of code.
- Classes are used to represent Codelets and Threaded Procedures.
- Data transmission through shared memory, signal transmission through function calls.

Extensions to Codelet Model

With FIFO Buffers
Case Study

Cannons Algorithm Pseudocode

```plaintext
forall i = 0 : n - 1
    left circular shift row i by i,
    so that \( A_{i,j} \) is assigned to \( A_{i, (j+1) \mod n} \)

forall j = 0 : n - 1
    upward circular shift column j by j,
    so that \( B_{i,j} \) is assigned \( B_{(i+1) \mod n, j} \)

for k = 1 : n
    forall i = 0 : n - 1
        forall j = 0 : n - 1
            \( C_{i,j} = C_{i,j} + A_{i,j} \cdot B_{i,j} \)

    left circular shift each row of a by 1,
    so \( A_{i,j} \) is assigned \( A_{i, (j+1) \mod n} \)

    upward circular shift each column of b by 1,
    so \( B_{i,j} \) is assigned \( B_{(i+1) \mod n, j} \)
```

Step 1: Skew / Initialize the Matrices
- Shift **left** each element in row \(i \) **by** \(i \) **times**.
- Shift **up** each element in column \(j \) **by** \(j \) **times**.

Step 2: Shift & Multiply

Computation

Communication

24
CDG : Without DF-SWP

- **CopyA and CopyB**: Copy original matrix A and B to tile memory local to each codelet.
- **Skew**: skew/initialize matrix A and B
- **loop**: iterates P times. acts as a barrier between different instances of compute codelet.
- **Compute**: multiplies sub-matrix A and B, stores results in sub-matrix C. Circularly shifts sub-matrix A and B. sends a signal to loop codelet when finished.
- **CopyC**: When loop codelet finishes its P iterations, resultant sub-matrix C computation is complete. Now, CopyC codelet simply copies sub-matrix C back to main memory from tile memory.
Case Study

Communication Without DF-SWP

- **Stage 1:** CopyA and CopyB codelets copy sub-matrix A and B from main memory to tile memory of codelets. This is shown with the bold arrows on (top and left periphery).

- **Stage 2:** Sub-matrix A and B are skewed. Skew codelet per-forms this operation. Sub-matrix blocks for A and B along with Aw and Bw are used with skew phase communication shown using blue arrows.

- **Stage 3:** Sub-Matrix C is calculated using Compute codelet. Sub-matrix A and B are circularly shifted causing computation phase communication also shown using red arrows.

- **Stage 4:** Sub-matrix C is copied back to main memory from tile memory of codelets. This is shown using bold arrows (right side periphery).
• **loop:** This codelet iterates P times. This codelet acts as a barrier between different instances of compute codelet.

• **Compute:** This codelet, multiplies sub-matrix A and B, stores results in sub-matrix C. It also circularly shifts sub-matrix A and B. It sends a signal to loop codelet when finished.

• **CopyC:** When loop codelet finishes its P iterations, resultant sub-matrix C computation is complete. Now, CopyC codelet simply copies sub-matrix C back to main memory from tile memory.
Stage 1: CopyA and CopyB codelets copy sub-matrix A and B from main memory to tile memory of codelets. This is shown with the bold arrows on (top and left periphery).

Stage 2: Sub-matrix A and B are skewed. Skew codelet per-forms this operation. Sub-matrix blocks for A and B along with Aw and Bw are used with skew phase communication shown using blue arrows.

Stage 3: Sub-Matrix C is calculated using Compute codelet. Sub-matrix A and B are circularly shifted causing computation phase communication also shown using red arrows.

Stage 4: Sub-matrix C is copied back to main memory from tile memory of codelets. This is shown using bold arrows (right side periphery).
Evaluate Cannon’s algorithm using dataflow-based runtime DARTS

- **Without DF-SWP (Baseline):** This implementation uses a loop codelet as a barrier between iterations of compute codelets.
- **With DF-SWP:** extend baseline implementation with dataflow software pipelining by using FIFO buffers

Experimental Setup

- Two sockets, 28 cores per socket
- Intel Xeon Platinum 8180M (Skylake) processor clocked at 2.5GHz with Hyper-Threading (HT)
- 32KB private L1, 1MB private unified L2 caches
- 383GB of DRAM divided into two NUMA
- Red Hat Enterprise Linux 7.5
- GCC 8.2 with optimizations set to -O3

Fine-tune DARTS AMM

- map threads on separate cores until all cores were assigned at least one thread
- KMP_AFFINITY parameter and set it to BALANCED with granularity as CORE
- fine-tune DARTS AMM by setting the scheduler affinity policy as COMPACT_NO_SMT (SUs and CUs are pinned down to physically contiguous cores without using Hyper-Threading until all physical cores are used)
- restricted to only square matrices.
Evaluation

Relative Speedup

Relative Speedup of $1.4x$ is achieved with dataflow software pipeline enabled.

$\text{Speedup}_{\text{relative}} = \frac{\text{Time}_{\text{with df swp}}}{\text{Time}_{\text{without df swp}}}$
Better compute efficiency is observed with dataflow software pipelining enabled.
Evaluation

Weak Scaling

We observe consistent better results with dataflow software pipelining.

The problem size assigned to each processing element stays constant and additional elements are used to solve a larger total problem.
Strong Scaling

Evaluation

Strong Scaling
Matrix Size 4000

We observe consistent better results with dataflow software pipelining.

the problem size assigned to each processing element stays constant and additional elements are used to solve a larger total problem.
Synchronization overhead decreases with dataflow software pipelining enabled.

The best speedup of $3.2x$ is observed for high thread counts of 100.
Motivation & Background
Problem Formulation
Solution Methodology
Cannons Algorithm Case Study
Experimental Evaluation
Future Work & Conclusions
Future Work

- Fully exploit the potential of Dataflow Software Pipelining techniques is to explore hardware-software co-design techniques.

- hardware architectures that support features like programmer addressable fast scratchpad memory which can be used to implement FIFO Buffers while taking advantage of locality
 - Cerebras CS-2
 - Intel Xe GPU
 - Graphcore IPU
Conclusion

- Extend software pipeline techniques to the coarse grain to exploit pipelined parallelism across loops.

- Extensions to the dataflow-based Codelet Model to efficiently support dataflow software pipelining.

- Detailed case study of Cannon's algorithm

- Lays strong groundwork for research in this direction in the era of many-core architectures

- Using proved techniques in the traditional single-core architecture era
Thank You

Acknowledgements: This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357. We gratefully acknowledge the assistance provided by the Argonne Computational Scientists. This work is partially supported by the National Science Foundation, under award SHF-1763654.

Github Repo: Balancing Techniques

https://github.com/sraskar/cannon-dfswp

Sid Raskar
sraskar@anl.gov