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Software PipeliningBackground

ü Instruction Level Parallelism
ü Fine Grained 
ü Single Core

Loop:  for (i=0 ; I < 3 ; i++)

s1: a[i] = a[i] + 1 ;
s2: b[i] = a[i] + 1 ;
s3: c[i] = b[i] + 1 ;

Software Pipelining is one of the most successful loop compilation 
technology in the exploitation of Instruction Level Parallelism

Core
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ü Fine Grained
ü Instruction Level Parallelism
ü Maximum Throughput is achieved with 

balancing using FIFO Buffers

ØDataflow Software Pipelining is compile time as well 
as runtime technique. 

ØThe naturally available information about 
dependencies is used at runtime for scheduling.

ØTokens from various iterations of the loop are 
executed. 

• 5 Nodes, each is an Instruction
• Assume each instruction takes 1 cycle.

4 Stage Dataflow Software Pipeline

+

-

* +

Stage 1

*

Stage 2 Stage 3 Stage 4

1 3 4

2

5

Dataflow Software PipeliningBackground

Reference: Guang R. Gao, Algorithmic aspects of balancing techniques for pipelined data flow code generation, Journal of Parallel and Distributed Computing, Volume 6, Issue 1, 1989.
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ØDataflow Software Pipelining is compile time as well 
as runtime technique. 

ØThe naturally available information about 
dependencies is used at runtime for scheduling.

ØTokens from various iterations of the loop are 
executed. 

• 5 Nodes, each is an Instruction
• Assume each instruction takes 1 cycle.
• Balanced graph using FIFO Buffer of Size 2

4 Stage Dataflow Software Pipeline

+

-

* +

Stage 1

*

Stage 2 Stage 3 Stage 4

1 3 4

2

5

FIFO Size 2

Dataflow Software PipeliningBackground

Reference: Guang R. Gao, Algorithmic aspects of balancing techniques for pipelined data flow code generation, Journal of Parallel and Distributed Computing, Volume 6, Issue 1, 1989.

ü Fine Grained
ü Instruction Level Parallelism
ü Maximum Throughput is achieved with 

balancing using FIFO Buffers
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ØRise of Many Core Architectures 
ØChanges is Computer Architecture

Challenges to extend this for multiple cores 
• Variability of instruction timing between 

cores
• Loop carried dependencies must be realized 

across different cores. 
• Variable runtime traffic in the on-chip 

network.

https://www.alcf.anl.gov/alcf-ai-testbed

Rise of Many Core ChipsBackground

Reference: John L. Hennessy, David A. Patterson, A New Golden Age for Computer 
Architecture, Communications of the ACM, February 2019

Cerebras Samanova

Graphcore

Habana

Groq

https://www.alcf.anl.gov/alcf-ai-testbed


Motivation & Background

Problem Formulation

Solution Methodology

Cannons Algorithm Case Study

Experimental Evaluation

Future Work & Conclusions

Agenda



9

Problem 
Formulation

for (i=0 ; I < 3 ; i++)

a[i] = i ;

for (i=0 ; I < 3 ; i++)

b[i] = a[i] + 1 ;

P1

P2

P3

Pn

How should the success of 
software pipelining 

& 
Dataflow Software Pipelining 

can be exploited under 
the new many core architecture era? 

A model which will leverage 

coarse grain parallelism at Codelet graph level
& 

fine grain parallelism at Codelet level.
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Producer 
Codelet

Consumer
Codelet

L1 : For (1 to N)
A[i] = i

L2 : For (1 to N)
B[i] = A[i] + 1

C1

C2

FIFO
Buffer

Producer 
Codelet

Consumer
Codelet

L1 : For (1 to N)
A[i] = i

L2 : For (1 to N)
B[i] = A[i] + 1

C1

C2

Problem 
Formulation

How should the success of 
dataflow software pipelining 

be exploited in the 
many core architecture era? 

A programming model which will leverage 
coarse grain parallelism at Codelet graph level

& 
fine grain parallelism at Codelet level.

Reference : S. Raskar, T. Applencourt, K. Kumaran and G. Gao, "Position Paper: Extending Codelet Model for Dataflow 
Software Pipelining using Software-Hardware Co-Design," 2019 IEEE 43rd Annual Computer Software and Applications 
Conference (COMPSAC), Milwaukee, WI, USA, 2019

ØExtension to Codelet Model 
ØActivity Model
ØSynchronization Model 

ØExtension to Codelet Abstract 
Machine to support efficient 
implementation of FIFO buffers
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Window
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Window
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Window

Register 
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…

Synchronization Unit

Out-of-cluster Communication

Program 
Execution 

Model

Activity 
Model

Synchronization 
Model

Memory 
Model

Defines Parallel activities
Defines interactions 
between activities 

Specifies addressing model, results of memory operations
& memory state transition

Codelet Abstract Machine
(CAM)

Codelet Program Execution Model
(PXM)

SU : Synchronization Unit
CU : Compute Unit
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Codelet ModelBackground

_ _ _
_ _ _

_ _ _• Sequentially Executed 
• Atomically Scheduled 
• Non-Preemptive

Codelet

• Collection of Codelets
• Shared input parameters 
• Shared context & local variables

Threaded Procedure

• Program representation 
• Nodes -> Codelets
• Edges -> Dependencies

Codelet Graph

Codelet States
• Ready
• Fire

• Dormant
• Enabled

Firing Rules
• A codelet becomes enabled once tokens are 

present on each of its input arcs. 

• An enabled codelet can be fired if it has acquired 
all its required resource. 

• A codelet fires by consuming tokens on its input 
arcs, performing the operations within the 
codelet, and producing a token on each of its 
output arcs. 

Activity Model Synchronization Model



15

Codelet ModelSolution
Methodology

Original Firing Rules
• A codelet becomes enabled once tokens are 

present on each of its input arcs. 
• An enabled codelet can be fired if it has acquired 

all its required resource. 
• A codelet fires by consuming tokens on its input 

arcs, performing the operations within the 
codelet, and producing a token on each of its 
output arcs. 

Extended Firing Rules
• For certain class of Codelet Graphs, Codelets

marked by programmer or compiler can enabled
even though input tokens from all iterations are 
not yet present on its input arcs. 

• These enabled codelets will fire as soon as tokens 
from some iterations are present on its input arcs. 

Ø Consumer Codelet can NOT
begin its execution while 
Producer Codelet is executing

Ø When Producer finishes its 
entire execution and sends 
event or data to the Consumer 
Codelet then only Consumer 
codelet can begin.

Producer 
Codelet

Consumer
Codelet

L1 : For (1 to N)
A[i] = i

L2 : For (1 to N)
B[i] = A[i] + 1

C1

C2

Ø Consumer Codelet CAN begin 
its execution while Producer 
Codelet is executing

Ø Tokens can stream from 
producer to consumer codelet
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Extension to Codelet Abstract MachineSolution
Methodology

DRAM

CUCUCU

Write Back
SynchronizeSU

Memory
Interface

Codelet Core

LCCM

Why need to extend Codelet Model?
Ø HPC systems becoming more diverse, 

heterogeneous
e.g. CPU, GPU, FPGA, ASIC

Ø Memory systems becoming more diverse
e.g. Unified memory, Scratchpad memory, multiple 
levels of cache.

Extended Codelet Abstract Machine Model
(xCAM)

Codelet Core.

ØMoving memory out of Codelet level core to hide 
latencies in memory operations.

Local Codelet Core Memory (LCCM)
ØEfficient FIFO Buffers 

SU : Synchronization Unit
CU : Compute Unit
LCCM : Local Codelet Core Memory
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Extension to Codelet Abstract MachineSolution
Methodology

Producer & Consumer Codelets -

üExecute simultaneously on the 
same Codelet Core

üTokens stream continuously 
from Producer to Consumer via 
FIFO buffers

üFIFO buffers are mapped to 
LCCM for efficient execution.

Producer 
Codelet

Consumer
Codelet

L1 : For (1 to N)
A[i] = i

L2 : For (1 to N)
B[i] = A[i] + 1

C1

C2

FIFO
Buffer

DRAM

CUCUCU
Write Back

Synchronize

LCCM

SU

Memory
Interface

Codelet Core
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Extended Codelet Model For 
Dataflow Software Pipelining

Solution 
Methodology 

3

1
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Codelet
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L1 : For (1 to N)
A[i] = i

L2 : For (1 to N)
B[i] = A[i] + 1

C1

C2

FIFO
Buffer

Producer-Consumer 
Codelets in a CDG Extended Codelet Abstract Machine(xCAM)Codelet Graph (CDG)

SU : Synchronization Unit
CU : Compute Unit
LCCM : Local Codelet Core Memory
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Cannons Algorithm under DARTSCase Study

• Matrix Multiplication is important kernel 
behind many scientific as well for Machine 
Learning application domain 

• Over lapping of computation and 
communication phase gives opportunity to 
demonstrate advantage of dataflow 
software pipelining techniques 

• Satisfies our specification for the class of 
codelet graph both at Codelet Graphs level 
& Codelet level. 

Ø implementation of the Codelet Model on x86.

Ø Open Source, Written in C++, 42000 lines of code

ØClasses are used to represent Codelets and Threaded 
Procedures

ØData transmission through shared memory, signal 
transmission through function calls

Cannons Algorithm

Extensions to 
Codelet Model

Delaware Adaptive Run-Time System
(DARTS)

With FIFO 
Buffers
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Cannons Algorithm PseudocodeCase Study

forall i = 0 : n - 1
left circular shift row i by i,
so that Ai,j is assigned to Ai , (j+1) mod n

forall j = 0 : n – 1
upward circular shift column j by j,
so that Bi,j is assigned B(j+1) mod n , j

for k = 1 : n
forall i = 0 : n -1

forall j = 0 : n - 1
Ci,j = Cij + Aij . Bij
left circular shift each row of a by 1,
so Aij is assigned Ai, (j+1) mod n
upward circular shift each column of b by 1,
so Bij is assigned B(i+1) mod n, j

Step 1 : 
Skew / Initialize 

the Matrices

Step 2 : 
Shift & Multiply

Computation

Communication

Shift left each element 
in row i by i times. 

Shift up each element 
in column j by j times.  

M
at

rix
 A

M
at

rix
 B
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CDG : Without DF-SWPCase Study

4

loop

CopyA CopyB

Skew

Compute

CopyC

2

1

3

[#Tiles]

[#Tiles]

[#Tiles]

[#Tiles]

[#Tiles]

• CopyA and CopyB: 
Copy original matrix A and B to tile memory local to each codelet. 

• Skew: skew/initialize matrix A and B

• loop: 
iterates P times. 
acts as a barrier between different instances of compute codelet.

• Compute: 
multiplies sub-matrix A and B, stores results in sub-matrix C. 
Circularly shifts sub-matrix A and B. 
sends a signal to loop codelet when finished.

• CopyC: When loop codelet finishes its P iterations, resultant
sub-matrix C computation is complete. Now, CopyC codelet
simply copies sub-matrix C back to main memory from tile
memory



Communication 
Without DF-SWP

Case 
Study
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Tile 1 Tile 2 Tile 3

Tile 4 Tile 5 Tile 6

Tile 7 Tile 8 Tile 9

Skew Phase Communication Compute Phase Communication

• Stage 1: CopyA and CopyB codelets copy sub-
matrix A and B from main memory to tile 
memory of codelets. This is shown with the bold 
arrows on (top and left periphery)

• Stage 2: Sub-matrix A and B are skewed. Skew 
codelet per-forms this operation. Sub-matrix 
blocks for A and B along with Aw and Bw are 
used with skew phase communication shown 
using blue arrows.

• Stage 3: Sub-Matrix C is calculated using 
Compute codelet. Sub-matrix A and B are 
circularly shifted causing computation phase 
communication also shown using red arrows.

• Stage 4: Sub-matrix C is copied back to main 
memory from tile memory of codelets. This is 
shown using bold arrows (right side periphery)
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CDG : With DF-SWPCase Study

• loop: This codelet iterates P times. This codelet acts as a
barrier between different instances of compute codelet.

• Compute: This codelet, multiplies sub-matrix A and B, stores
results in sub-matrix C. It also circularly shifts sub-matrix A
and B. It sends a signal to loop codelet when finished.

• CopyC: When loop codelet finishes its P iterations, resultant
sub-matrix C computation is complete. Now, CopyC codelet
simply copies sub-matrix C back to main memory from tile
memory

4
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Compute

CopyC
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Communication 
With DF-SWP

Case 
Study
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• Stage 1: CopyA and CopyB codelets copy sub-
matrix A and B from main memory to tile 
memory of codelets. This is shown with the bold 
arrows on (top and left periphery)

• Stage 2: Sub-matrix A and B are skewed. Skew 
codelet per-forms this operation. Sub-matrix 
blocks for A and B along with Aw and Bw are 
used with skew phase communication shown 
using blue arrows.

• Stage 3: Sub-Matrix C is calculated using 
Compute codelet. Sub-matrix A and B are 
circularly shifted causing computation phase 
communication also shown using red arrows.

• Stage 4: Sub-matrix C is copied back to main 
memory from tile memory of codelets. This is 
shown using bold arrows (right side periphery)
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Experimental SetupEvaluation

• Two sockets, 28 cores per socket 
• Intel Xeon Platinum 8180M(Skylake) processor 

clocked at 2.5GHz with Hyper-Threading (HT)
• 32𝐾𝐵 private L1, 1MB private unified L2 caches
• 383GB of DRAM divided into two NUMA
• Red Hat Enterprise Linux 7.5 
• GCC 8.2 with optimizations set to -O3

Evaluate Cannon’s algorithm using dataflow-based runtime DARTS

Ø Without DF-SWP (Baseline): This implementation uses a loop codelet as a barrier between iterations of 
compute codelets. 

Ø With DF-SWP: extend baseline implementation with dataflow software pipelining by using FIFO buffers

• map threads on separate cores until all cores
were assigned at least one thread

• KMP_AFFINITY parameter and set it to 
BALANCED with granularity as CORE

• fine-tune DARTS AMM by setting the scheduler
affinity policy as COMPACT_NO_SMT (SUs and 
CUs are pinned down to physically contiguous 
cores without using Hyper-Threading until all 
physical cores are used)

• restricted to only square matrices. 
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Relative SpeedupEvaluation
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With DF-SWP vs Without DF-SWP

𝑆𝑝𝑒𝑒𝑑𝑢𝑝𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 =
𝑇𝑖𝑚𝑒𝑤𝑖𝑡ℎ 𝑑𝑓𝑠𝑤𝑝
𝑇𝑖𝑚𝑒𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑑𝑓𝑠𝑤𝑝

Relative Speedup of 1.4𝑥 is 
achieved with dataflow software 

pipeline enabled.
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Compute EfficiencyEvaluation
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𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇ℎ𝑟𝑒𝑎𝑑𝑠
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Better compute efficiency is 
observed with dataflow 

software pipelining enabled.
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Weak ScalingEvaluation
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We observe consistent better 
results with dataflow software 

pipelining

the problem size assigned to each processing 
element stays constant and additional elements 

are used to solve a larger total problem.
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Strong ScalingEvaluation
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the problem size assigned to
each processing element stays constant 

and additional elements are used to solve a 
larger total problem.

We observe consistent better 
results with dataflow software 

pipelining
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Synchronization OverheadEvaluation
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synchronization overhead by omitting time 
consumed by compute codelets from the 

total execution time

Synchronization overhead decreases 
with dataflow software pipelining 

enabled.

The best speedup of 3.2𝑥 is 
observed for high thread counts of 

100.



Motivation & Background

Problem Formulation

Solution Methodology

Cannons Algorithm Case Study

Experimental Evaluation

Future Work & Conclusions

Agenda



37

Future Work

Ø Fully exploit the potential of Dataflow Software Pipelining techniques is to 
explore hardware-software co-design techniques.

Ø hardware architectures that support features like programmer addressable fast 
scratchpad memory which can be used to implement FIFO Buffers while taking 
advantage of locality

Ø Cerebras CS-2
Ø Intel Xe GPU
Ø Graphcore IPU
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Conclusion

• Lays strong groundwork for 
research in this direction in the era 
of many-core architectures

• Using proved techniques in the 
traditional single-core architecture 
era

üExtend software pipeline techniques to 
the coarse grain to exploit pipelined 
parallelism across loops. 

üExtensions to the dataflow-based 
Codelet Model to efficiently support 
dataflow software pipelining. 

üDetailed case study of Cannon’s 
algorithm
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Thank You

Github Repo: Balancing Techniques
https://github.com/sraskar/cannon-dfswp
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