
The 14th International Conference on Performance Engineering (ICPE)

IMPLEMENTATION OF DATAFLOW SOFTWARE
PIPELINING FOR CODELET MODEL

e r h t jh tyh y

ICPE 2023, April 2023, Coimbra, Portugal

SIDDHISANKET RASKAR1 ,JOSE MONSALVE DIAZ1 , THOMAS APPLENCOURT1 ,
KALYAN KUMARAN1 , GUANG GAO2

1ARGONNE NATIONAL LABORATORY, LEMONT, IL, USA.
2UNIVERSITY OF DELWARE, NEWARK, DE, USA.

Motivation & Background

Problem Formulation

Solution Methodology

Cannons Algorithm Case Study

Experimental Evaluation

Future Work & Conclusions

Agenda

4

Software PipeliningBackground

ü Instruction Level Parallelism
ü Fine Grained
ü Single Core

Loop: for (i=0 ; I < 3 ; i++)

s1: a[i] = a[i] + 1 ;
s2: b[i] = a[i] + 1 ;
s3: c[i] = b[i] + 1 ;

Software Pipelining is one of the most successful loop compilation
technology in the exploitation of Instruction Level Parallelism

Core

5

ü Fine Grained
ü Instruction Level Parallelism
ü Maximum Throughput is achieved with

balancing using FIFO Buffers

ØDataflow Software Pipelining is compile time as well
as runtime technique.

ØThe naturally available information about
dependencies is used at runtime for scheduling.

ØTokens from various iterations of the loop are
executed.

• 5 Nodes, each is an Instruction
• Assume each instruction takes 1 cycle.

4 Stage Dataflow Software Pipeline

+

-

* +

Stage 1

*

Stage 2 Stage 3 Stage 4

1 3 4

2

5

Dataflow Software PipeliningBackground

Reference: Guang R. Gao, Algorithmic aspects of balancing techniques for pipelined data flow code generation, Journal of Parallel and Distributed Computing, Volume 6, Issue 1, 1989.

6

ØDataflow Software Pipelining is compile time as well
as runtime technique.

ØThe naturally available information about
dependencies is used at runtime for scheduling.

ØTokens from various iterations of the loop are
executed.

• 5 Nodes, each is an Instruction
• Assume each instruction takes 1 cycle.
• Balanced graph using FIFO Buffer of Size 2

4 Stage Dataflow Software Pipeline

+

-

* +

Stage 1

*

Stage 2 Stage 3 Stage 4

1 3 4

2

5

FIFO Size 2

Dataflow Software PipeliningBackground

Reference: Guang R. Gao, Algorithmic aspects of balancing techniques for pipelined data flow code generation, Journal of Parallel and Distributed Computing, Volume 6, Issue 1, 1989.

ü Fine Grained
ü Instruction Level Parallelism
ü Maximum Throughput is achieved with

balancing using FIFO Buffers

7

ØRise of Many Core Architectures
ØChanges is Computer Architecture

Challenges to extend this for multiple cores
• Variability of instruction timing between

cores
• Loop carried dependencies must be realized

across different cores.
• Variable runtime traffic in the on-chip

network.

https://www.alcf.anl.gov/alcf-ai-testbed

Rise of Many Core ChipsBackground

Reference: John L. Hennessy, David A. Patterson, A New Golden Age for Computer
Architecture, Communications of the ACM, February 2019

Cerebras Samanova

Graphcore

Habana

Groq

https://www.alcf.anl.gov/alcf-ai-testbed

Motivation & Background

Problem Formulation

Solution Methodology

Cannons Algorithm Case Study

Experimental Evaluation

Future Work & Conclusions

Agenda

9

Problem
Formulation

for (i=0 ; I < 3 ; i++)

a[i] = i ;

for (i=0 ; I < 3 ; i++)

b[i] = a[i] + 1 ;

P1

P2

P3

Pn

How should the success of
software pipelining

&
Dataflow Software Pipelining

can be exploited under
the new many core architecture era?

A model which will leverage

coarse grain parallelism at Codelet graph level
&

fine grain parallelism at Codelet level.

10

Producer
Codelet

Consumer
Codelet

L1 : For (1 to N)
A[i] = i

L2 : For (1 to N)
B[i] = A[i] + 1

C1

C2

FIFO
Buffer

Producer
Codelet

Consumer
Codelet

L1 : For (1 to N)
A[i] = i

L2 : For (1 to N)
B[i] = A[i] + 1

C1

C2

Problem
Formulation

How should the success of
dataflow software pipelining

be exploited in the
many core architecture era?

A programming model which will leverage
coarse grain parallelism at Codelet graph level

&
fine grain parallelism at Codelet level.

Reference : S. Raskar, T. Applencourt, K. Kumaran and G. Gao, "Position Paper: Extending Codelet Model for Dataflow
Software Pipelining using Software-Hardware Co-Design," 2019 IEEE 43rd Annual Computer Software and Applications
Conference (COMPSAC), Milwaukee, WI, USA, 2019

ØExtension to Codelet Model
ØActivity Model
ØSynchronization Model

ØExtension to Codelet Abstract
Machine to support efficient
implementation of FIFO buffers

Motivation & Background

Problem Formulation

Solution Methodology

Cannons Algorithm Case Study

Experimental Evaluation

Future Work & Conclusions

Agenda

NodeNode Interconnect

Chip Chip

Interconnect

Chip Chip

Node

…

…

i/o

i/o

DRAM

Cluster Cluster

Interconnect

Cluster Cluster

Chip

…

…

CU CU

Interconnect

SU Cluster
memory

Cluster

…

…

Compute Unit

Local Memory

Register
Window

Register
Window

…

Local Memory

Register
Window

Register
Window

…

Synchronization Unit

Out-of-cluster Communication

Program
Execution

Model

Activity
Model

Synchronization
Model

Memory
Model

Defines Parallel activities
Defines interactions
between activities

Specifies addressing model, results of memory operations
& memory state transition

Codelet Abstract Machine
(CAM)

Codelet Program Execution Model
(PXM)

SU : Synchronization Unit
CU : Compute Unit

14

Codelet ModelBackground

_ _ _
_ _ _

_ _ _• Sequentially Executed
• Atomically Scheduled
• Non-Preemptive

Codelet

• Collection of Codelets
• Shared input parameters
• Shared context & local variables

Threaded Procedure

• Program representation
• Nodes -> Codelets
• Edges -> Dependencies

Codelet Graph

Codelet States
• Ready
• Fire

• Dormant
• Enabled

Firing Rules
• A codelet becomes enabled once tokens are

present on each of its input arcs.

• An enabled codelet can be fired if it has acquired
all its required resource.

• A codelet fires by consuming tokens on its input
arcs, performing the operations within the
codelet, and producing a token on each of its
output arcs.

Activity Model Synchronization Model

15

Codelet ModelSolution
Methodology

Original Firing Rules
• A codelet becomes enabled once tokens are

present on each of its input arcs.
• An enabled codelet can be fired if it has acquired

all its required resource.
• A codelet fires by consuming tokens on its input

arcs, performing the operations within the
codelet, and producing a token on each of its
output arcs.

Extended Firing Rules
• For certain class of Codelet Graphs, Codelets

marked by programmer or compiler can enabled
even though input tokens from all iterations are
not yet present on its input arcs.

• These enabled codelets will fire as soon as tokens
from some iterations are present on its input arcs.

Ø Consumer Codelet can NOT
begin its execution while
Producer Codelet is executing

Ø When Producer finishes its
entire execution and sends
event or data to the Consumer
Codelet then only Consumer
codelet can begin.

Producer
Codelet

Consumer
Codelet

L1 : For (1 to N)
A[i] = i

L2 : For (1 to N)
B[i] = A[i] + 1

C1

C2

Ø Consumer Codelet CAN begin
its execution while Producer
Codelet is executing

Ø Tokens can stream from
producer to consumer codelet

18

Extension to Codelet Abstract MachineSolution
Methodology

DRAM

CUCUCU

Write Back
SynchronizeSU

Memory
Interface

Codelet Core

LCCM

Why need to extend Codelet Model?
Ø HPC systems becoming more diverse,

heterogeneous
e.g. CPU, GPU, FPGA, ASIC

Ø Memory systems becoming more diverse
e.g. Unified memory, Scratchpad memory, multiple
levels of cache.

Extended Codelet Abstract Machine Model
(xCAM)

Codelet Core.

ØMoving memory out of Codelet level core to hide
latencies in memory operations.

Local Codelet Core Memory (LCCM)
ØEfficient FIFO Buffers

SU : Synchronization Unit
CU : Compute Unit
LCCM : Local Codelet Core Memory

19

Extension to Codelet Abstract MachineSolution
Methodology

Producer & Consumer Codelets -

üExecute simultaneously on the
same Codelet Core

üTokens stream continuously
from Producer to Consumer via
FIFO buffers

üFIFO buffers are mapped to
LCCM for efficient execution.

Producer
Codelet

Consumer
Codelet

L1 : For (1 to N)
A[i] = i

L2 : For (1 to N)
B[i] = A[i] + 1

C1

C2

FIFO
Buffer

DRAM

CUCUCU
Write Back

Synchronize

LCCM

SU

Memory
Interface

Codelet Core

20

Extended Codelet Model For
Dataflow Software Pipelining

Solution
Methodology

3

1

20

1

1

5

4

2

3

4

5

5

10

DR
AM

LCCM

M
em

or
y

In
te

rf
ac

e

Codelet Core

W
rit

e-
Ba

ck
Sy

nc
hr

on
ize

CUCUCU

CUCUCU

CUCUSUProducer
Codelet

Consumer
Codelet

L1 : For (1 to N)
A[i] = i

L2 : For (1 to N)
B[i] = A[i] + 1

C1

C2

FIFO
Buffer

Producer-Consumer
Codelets in a CDG Extended Codelet Abstract Machine(xCAM)Codelet Graph (CDG)

SU : Synchronization Unit
CU : Compute Unit
LCCM : Local Codelet Core Memory

Motivation & Background

Problem Formulation

Solution Methodology

Cannons Algorithm Case Study

Experimental Evaluation

Future Work & Conclusions

Agenda

23

Cannons Algorithm under DARTSCase Study

• Matrix Multiplication is important kernel
behind many scientific as well for Machine
Learning application domain

• Over lapping of computation and
communication phase gives opportunity to
demonstrate advantage of dataflow
software pipelining techniques

• Satisfies our specification for the class of
codelet graph both at Codelet Graphs level
& Codelet level.

Ø implementation of the Codelet Model on x86.

Ø Open Source, Written in C++, 42000 lines of code

ØClasses are used to represent Codelets and Threaded
Procedures

ØData transmission through shared memory, signal
transmission through function calls

Cannons Algorithm

Extensions to
Codelet Model

Delaware Adaptive Run-Time System
(DARTS)

With FIFO
Buffers

24

Cannons Algorithm PseudocodeCase Study

forall i = 0 : n - 1
left circular shift row i by i,
so that Ai,j is assigned to Ai , (j+1) mod n

forall j = 0 : n – 1
upward circular shift column j by j,
so that Bi,j is assigned B(j+1) mod n , j

for k = 1 : n
forall i = 0 : n -1

forall j = 0 : n - 1
Ci,j = Cij + Aij . Bij
left circular shift each row of a by 1,
so Aij is assigned Ai, (j+1) mod n
upward circular shift each column of b by 1,
so Bij is assigned B(i+1) mod n, j

Step 1 :
Skew / Initialize

the Matrices

Step 2 :
Shift & Multiply

Computation

Communication

Shift left each element
in row i by i times.

Shift up each element
in column j by j times.

M
at

rix
 A

M
at

rix
 B

25

CDG : Without DF-SWPCase Study

4

loop

CopyA CopyB

Skew

Compute

CopyC

2

1

3

[#Tiles]

[#Tiles]

[#Tiles]

[#Tiles]

[#Tiles]

• CopyA and CopyB:
Copy original matrix A and B to tile memory local to each codelet.

• Skew: skew/initialize matrix A and B

• loop:
iterates P times.
acts as a barrier between different instances of compute codelet.

• Compute:
multiplies sub-matrix A and B, stores results in sub-matrix C.
Circularly shifts sub-matrix A and B.
sends a signal to loop codelet when finished.

• CopyC: When loop codelet finishes its P iterations, resultant
sub-matrix C computation is complete. Now, CopyC codelet
simply copies sub-matrix C back to main memory from tile
memory

Communication
Without DF-SWP

Case
Study

C

Bw

B

AAw C

Bw

B

AAw C

Bw

B

AAw

C

Bw

B

AAw C

Bw

B

AAw C

Bw

B

AAw

C

Bw

B

AAw C

Bw

B

AAw C

Bw

B

AAw

Matrix B
M

at
rix

 A

M
at

rix
 C

1 1

1

1

1

1

2

2

2

3

3

4

Tile 1 Tile 2 Tile 3

Tile 4 Tile 5 Tile 6

Tile 7 Tile 8 Tile 9

Skew Phase Communication Compute Phase Communication

• Stage 1: CopyA and CopyB codelets copy sub-
matrix A and B from main memory to tile
memory of codelets. This is shown with the bold
arrows on (top and left periphery)

• Stage 2: Sub-matrix A and B are skewed. Skew
codelet per-forms this operation. Sub-matrix
blocks for A and B along with Aw and Bw are
used with skew phase communication shown
using blue arrows.

• Stage 3: Sub-Matrix C is calculated using
Compute codelet. Sub-matrix A and B are
circularly shifted causing computation phase
communication also shown using red arrows.

• Stage 4: Sub-matrix C is copied back to main
memory from tile memory of codelets. This is
shown using bold arrows (right side periphery)

27

CDG : With DF-SWPCase Study

• loop: This codelet iterates P times. This codelet acts as a
barrier between different instances of compute codelet.

• Compute: This codelet, multiplies sub-matrix A and B, stores
results in sub-matrix C. It also circularly shifts sub-matrix A
and B. It sends a signal to loop codelet when finished.

• CopyC: When loop codelet finishes its P iterations, resultant
sub-matrix C computation is complete. Now, CopyC codelet
simply copies sub-matrix C back to main memory from tile
memory

4

barrier

CopyA CopyB

Skew

Compute

CopyC

2

1

3

[#Tiles]

[#Tiles]

[#Tiles]

[#Tiles]

[#Tiles]

Communication
With DF-SWP

Case
Study

C C C

C C

B
FIFO

AFIFO C

C C C

Matrix B
M

at
rix

 A

M
at

rix
 C

1 1

1

1

1

2

2

2

3

3

4

Tile 1 Tile 2 Tile 3

Tile 4 Tile 5 Tile 6

Tile 7 Tile 8 Tile 9

Skew Phase Communication Compute Phase Communication

B
FIFO

AFIFO

B
FIFO

AFIFO

B
FIFO

AFIFO

B
FIFO

AFIFO

1

B
FIFO

AFIFO

B
FIFO
AFIFO

B
FIFO

AFIFO

B
FIFO

AFIFO

• Stage 1: CopyA and CopyB codelets copy sub-
matrix A and B from main memory to tile
memory of codelets. This is shown with the bold
arrows on (top and left periphery)

• Stage 2: Sub-matrix A and B are skewed. Skew
codelet per-forms this operation. Sub-matrix
blocks for A and B along with Aw and Bw are
used with skew phase communication shown
using blue arrows.

• Stage 3: Sub-Matrix C is calculated using
Compute codelet. Sub-matrix A and B are
circularly shifted causing computation phase
communication also shown using red arrows.

• Stage 4: Sub-matrix C is copied back to main
memory from tile memory of codelets. This is
shown using bold arrows (right side periphery)

29

Experimental SetupEvaluation

• Two sockets, 28 cores per socket
• Intel Xeon Platinum 8180M(Skylake) processor

clocked at 2.5GHz with Hyper-Threading (HT)
• 32𝐾𝐵 private L1, 1MB private unified L2 caches
• 383GB of DRAM divided into two NUMA
• Red Hat Enterprise Linux 7.5
• GCC 8.2 with optimizations set to -O3

Evaluate Cannon’s algorithm using dataflow-based runtime DARTS

Ø Without DF-SWP (Baseline): This implementation uses a loop codelet as a barrier between iterations of
compute codelets.

Ø With DF-SWP: extend baseline implementation with dataflow software pipelining by using FIFO buffers

• map threads on separate cores until all cores
were assigned at least one thread

• KMP_AFFINITY parameter and set it to
BALANCED with granularity as CORE

• fine-tune DARTS AMM by setting the scheduler
affinity policy as COMPACT_NO_SMT (SUs and
CUs are pinned down to physically contiguous
cores without using Hyper-Threading until all
physical cores are used)

• restricted to only square matrices.

Motivation & Background

Problem Formulation

Solution Methodology

Cannons Algorithm Case Study

Experimental Evaluation

Future Work & Conclusions

Agenda

31

Relative SpeedupEvaluation

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

1 4 9 16 25 36 49 64 81 100

Sp
ee

du
p

Number of Threads

Relative Speedup
With DF-SWP vs Without DF-SWP

𝑆𝑝𝑒𝑒𝑑𝑢𝑝𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 =
𝑇𝑖𝑚𝑒𝑤𝑖𝑡ℎ 𝑑𝑓𝑠𝑤𝑝
𝑇𝑖𝑚𝑒𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑑𝑓𝑠𝑤𝑝

Relative Speedup of 1.4𝑥 is
achieved with dataflow software

pipeline enabled.

32

Compute EfficiencyEvaluation

0
20
40
60
80

100
120
140
160

1000 2000 4000 8000 16000

Ef
fic

in
ec

y

Size of Matrix

Compute Efficiency
100 Threads

With DF-SWP Without DF-SWP

𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇ℎ𝑟𝑒𝑎𝑑𝑠

𝑆𝑝𝑒𝑒𝑑𝑢𝑝

Better compute efficiency is
observed with dataflow

software pipelining enabled.

33

Weak ScalingEvaluation

0.00E+00
5.00E-02
1.00E-01
1.50E-01
2.00E-01
2.50E-01
3.00E-01
3.50E-01
4.00E-01

1 4 9 16 25 36 49 64 81 100

Ex
ec

ut
io

n
Ti

m
e

(s
ec

s)

Number of Threads

Weak Scaling
Tile Size 32

Without DF-SWP With DF-SWP

We observe consistent better
results with dataflow software

pipelining

the problem size assigned to each processing
element stays constant and additional elements

are used to solve a larger total problem.

34

Strong ScalingEvaluation

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

1 2 3 4 5

Ex
ec

ut
io

n
Ti

m
e

(s
ec

s)

Number of Threads

Strong Scaling
Matrix Size 4000

Without DF-SWP With DF-SWP

the problem size assigned to
each processing element stays constant

and additional elements are used to solve a
larger total problem.

We observe consistent better
results with dataflow software

pipelining

35

Synchronization OverheadEvaluation

0

0.5

1

1.5

2

2.5

3

3.5

1 4 16 25 100

Sp
ee

du
p

Number of Threads

Synchronization Overhead Speedup
Without DF-SWP Vs With DF-SWP

synchronization overhead by omitting time
consumed by compute codelets from the

total execution time

Synchronization overhead decreases
with dataflow software pipelining

enabled.

The best speedup of 3.2𝑥 is
observed for high thread counts of

100.

Motivation & Background

Problem Formulation

Solution Methodology

Cannons Algorithm Case Study

Experimental Evaluation

Future Work & Conclusions

Agenda

37

Future Work

Ø Fully exploit the potential of Dataflow Software Pipelining techniques is to
explore hardware-software co-design techniques.

Ø hardware architectures that support features like programmer addressable fast
scratchpad memory which can be used to implement FIFO Buffers while taking
advantage of locality

Ø Cerebras CS-2
Ø Intel Xe GPU
Ø Graphcore IPU

38

Conclusion

• Lays strong groundwork for
research in this direction in the era
of many-core architectures

• Using proved techniques in the
traditional single-core architecture
era

üExtend software pipeline techniques to
the coarse grain to exploit pipelined
parallelism across loops.

üExtensions to the dataflow-based
Codelet Model to efficiently support
dataflow software pipelining.

üDetailed case study of Cannon’s
algorithm

39

Thank You

Github Repo: Balancing Techniques
https://github.com/sraskar/cannon-dfswp

Acknowledgements: This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User
Facility supported under Contract DE-AC02-06CH11357. We gratefully acknowledge the assistance provided by the Argonne Computational

Scientists. This work is partially supported by the National Science Foundation, under award SHF-1763654.

Sid Raskar
sraskar@anl.gov

https://github.com/sraskar/cannon-dfswp
mailto:sraskar@anl.gov

