PN, POLYTECHNIQUE
| \ 7 MONTREAL

S S25. . UNIVERSITE
EFBIRGS D/INGENIERIE

HUMANITAS

Iransparent Trace Annotation for Performance Debugging

in Microservice-oriented Systems
(Work In Progress Paper)

Adel Belkhiri, Ahmad S. Bushehri, Felipe G. de Magalhaes, and Gabriela Nicolescu

HESL Lab. (Polytechnique Montreal) & HUMANITAS Inc.

14" ACM/SPEC International Conference on Performance Engineering (ICPE)

Coimbra, Portugal, April 15-19, 2023




=
Agenda

Introduction
> The microservice architecture

> Software tracing and performance debugging

Motivation
Literature analysis
Proposed solution: framework for a transparent annotation of traces

Conclusion and future work

HESL Lab & HUMANITAS - ICPE 2023 - Adel Belkhiri 2




Motivation  Literature Review  Proposed Solution ~ Conclusion

Microservice Architecture

* Microservices is a software architecture in which the application is implemented as a
collection of small, independent, and loosely-coupled services that communicate through
well-defined interfaces (e.g., RESTful APIs)

MICROSERVICE

MONOLITH APP

) COMM. INTERFACE

Figure: Monolithic architecture vs. microservices

* It presents indeed many advantages .. but complicates the debugging of latency-
related problems :/

HESL Lab & HUMANITAS - ICPE 2023 - Adel Belkhiri 3




Motivation  Literature Review  Proposed Solution ~ Conclusion

Software Tracing (1)

* Recording low-level information about a program execution, as a series of events

* FEach event is characterized by a name, timestamp, and payload (e.g., values of a program
variables)

* Tracers are powerful tools that are widely used for diagnosing applications performance
bugs

Program

instrumentation

\\ \\ event_2 } Trace

event_1

Figure: Analogy between a program and a bike, where instrumentation is like painting the bike's tires!

HESL Lab & HUMANITAS - ICPE 2023 - Adel Belkhiri



Motivation  Literature Review  Proposed Solution ~ Conclusion

Software Tracing (2)

* There exist many tracers with different tracing capabilities and scopes:
— Standalone applications: Ftrace, Systemtap, Uftrace, Dtrace, and LTTng
— Distributed applications: Jaeger and Zipkin

o Span: A tagged time interval denoting the execution latency of a particular operation
(e.g., RPC or function calls)

c

Ke)

§ node 1 node 2 node k

i 1

< :

b Service A Service B Service Z :

Q , Storage Backend
3 spans i l : |

2 5

2 Jaeger Agent Jaeger Agent Jaeger Agent . Jaeger Collector
kS

= I | Network | |

Figure: Reference architecture for a distributed tracer

HESL Lab & HUMANITAS - ICPE 2023 - Adel Belkhiri 5



Motivation  Literature Review  Proposed Solution ~ Conclusion

Software Tracing (3)

< v frontend: HTTP GET /dispatch 4737¢2 2
Trace Start December 16, 2018 5:19 PM = Duration 700.68ms Services 6 Depth5 Total Spans 50
Service & Operation v > ¥ » 0ms 175.17ms 350.34ms 525.51ms 700.68ms
v | frontend HTTP GET /dispatch - ______________________________________________________________________________]
v I frontend HTTP GET: /customer ]
v I frontend HTTP GET . 31073
VI customer HTTP GET /customer S 3 10.4ms
mysql SQL SELECT 3
v I frontend Driver:findNearest frontend::Driver::findNearest | 199.4ms EREEE——

v driver Driver:findNearest
redis FindDriveriDs
redis GetDriver
© redis GetDriver
redis GetDriver
redis GetDriver
redis GetDriver
redis GetDriver
redis GetDriver 15.86ms
redis GetDriver
redis GetDriver
@ redis GetDriver
redis GetDriver
redis GetDriver

v | frontend HTTP GET: /route

v | frontend HTTP GET

I route HTTP GET frute

Figure: Jaeger Ul showing microservices involved in processing a user request
(a ride order) along with resulted spans

HESL Lab & HUMANITAS - ICPE 2023 - Adel Belkhiri 6



Introduction Literature Review  Proposed Solution ~ Conclusion

Motivation

(>

* Problem: Distributed tracers can pinpoint slow services and detect latency-related
problems, but cannot be used for identifying the causes of performance issues

* Solution: A framework for annotating traces generated by distributed tracers with
useful information extracted from the Linux kernel

HESL Lab & HUMANITAS - ICPE 2023 - Adel Belkhiri 7




Introduction ~ Motivation Proposed Solution ~ Conclusion

Literature Analysis

* Literature reports many open-source and proprietary tracing tools, such as Canopy [1],
Dapper [2], Jaeger [3], and Zipkin [4]

— Cannot diagnose the causes of latency-related problems as they only leverage high-
level data

* Frameworks in [5] and [6] attach sidecars (e.g., Istio/Envoy) to containers to extract
metadata from microservices requests and generate tracing data.

— Only eliminate the need to instrument the application’s source code to generate
traces

* Frameworks in [5] and [6] propose cross-layer tracing for collecting and synchronizing
kernel and distributed request events, using patched Jaeger clients and Linux Kernel

— Very intrusive as they require the modification of the tracer and the Kernel

HESL Lab & HUMANITAS - ICPE 2023 - Adel Belkhiri 8




Introduction Motivation Literature Review Conclusion

The Span Latency Tracker Framework

* Span latency tracker

— Add annotation to long-lasting spans generated by monitored microservices to help
understand the causes of unusual latencies

— Annotation is derived from kernel events: system calls, application/kernel call stack, and
system wide metrics (example: average preemption time of threads)

— Architecture:

1) A set of monitoring libraries to preload, depending on the programming languages in
which microservices were implemented (C++, GO, Python, etc.)

2) Three kernel modules: span-latency-tracker.ko, latency-begin-end.ko, and latency-
tracker.ko

HESL Lab & HUMANITAS - ICPE 2023 - Adel Belkhiri




Introduction Motivation Literature Review Conclusion

Framework Architecture

Service A Service B Service C
(ct+) (golang) (python)
@

(0]
o
S - ‘\
a - . n :
I open-telemetry -j o mon‘i toring |
3 | TTTmTmTmmmessmem-------- ! Tibrary
jaeger- < I jaeger- Span ID ‘ o E
collector ! agent i registration,
. o shared mefmory, signals, etc.
A2 l
/proc/span-begin # A /proc/span-end !
? ? v
- 3
Jtaeger o latency-begin- | _ev_ellts_ - - 3»|span-latency-1 . _ Os events:
races % end.ko tracker.ko + syscall-enter/exit
S + task_newtask
< + sched_wakeup
I I i
latency-tracker.ko

Figure: Proposed framework is composed of kernel modules and a set of monitoring libraries to
pre-load when launching microservices

HESL Lab & HUMANITAS - ICPE 2023 - Adel Belkhiri 10




Introduction Motivation Literature Review Conclusion

Proposed Framework

Service & Operation v o> ¥ D 49.22ms 67.25ms 85.28ms 103.31ms

v I checkoutservice hipstershop.ShippingService/GetQuote

v | shippingservice hipstershop.ShippingService/GetQuote I |
v | shippingservice reqwest-hip-client

v | quoteservice /getquote |

quoteservice calculate-quote |
v | checkoutservice hipstershop CurrencyService/Convert —

v | currencyservice CurrencyService/Convert 3.78ms I
v | currencyservice kemel [ ]

| currencyservice _ getpid 1

| curencyservice e _ Our framework annotate the trace with the system calls |

| curencyservice ceiae executed within spans |
| currencyservice  sync O

Figure: Annotating CurrencyService/Convert operation with the system calls executed within it

* System calls are added as sub-spans, and callstacks and metric values as span attributes
and events

* The tool is very customizable: traces can be annotated with a subset of system calls of
interest, user can choose which data to use for annotation and set a latency threshold for spans
to be tracked, etc.

HESL Lab & HUMANITAS - ICPE 2023 - Adel Belkhiri 11




Introduction Motivation Literature Review Conclusion

Results & Discussion (1)

* Overhead analysis based on the evaluation of the Astronomy Shop [9] application performance.

Baseline —— 4357 +5 syscalls ——
Jae.ger 4183— 5000 | +10 SySCa”S || 4&1
Jaeger+Annotation ——— 4051 7 +15 syscalls —— 4801
4000 - i i +20 syscalls ——23 4654
/ @:7_
4000 | 7
/ #
3000 /
m @
£ E 3000 f
) )
g g
T 2000 | T
2000
1000 r
1000
578 588 590 592608 743752
0 noyon PR H%H / 0 2228 H@HH
100 1k 10k 100k 1k 10k 100k
Number of Requests Number of Requests
Fig. A: Execution time when tracing is not enabled, Fig. B: Execution time depending on the numbers
traced with Jaeger, and traced with our tool. of requests and injected system calls per span.

HESL Lab & HUMANITAS - ICPE 2023 - Adel Belkhiri 12




Introduction Motivation Literature Review Conclusion

Results & Discussion (2)

-_— ZIPKIN

* Advantages:
— Proposed framework can be coupled with any distributed tracer that support OpenTelemetry

— Non-intrusive approach for annotating traces

* Limitations
— Incapacity to intercept system calls of the vDSO type.

— Microservices written in bytecode-based languages (Java) are not supported yet.

HESL Lab & HUMANITAS - ICPE 2023 - Adel Belkhiri 13




Introduction ~ Motivation  Literature Review  Proposed Solution

Conclusion

* Framework for annotating distributed traces with information derived from kernel events
* Particularly efficient in diagnosing the causes of long-tail latencies

* Open-source*, non-intrusive, and induces low-overhead

Future Work

1) Extend the annotation mechanism to support bytecode-based microservices

2) Include more metrics and information into the trace annotation

This project is a
work in progress, so
if you have ideas on
how to improve it,
please let us know!

HESL Lab & HUMANITAS - ICPE 2023 - Adel Belkhiri

*Authors’ GitHub : https://github.com/adel-belkhiri

14


https://github.com/adel-belkhiri

Questions?

adel.belkhiri@polymtl.ca

HESL Lab & HUMANITAS - ICPE 2023 - Adel Belkhiri



=
Bibliographie

[1] Jonathan Kaldor et al., 2017. Canopy: An End-to-End Performance Tracing And Analysis System. Proceedings
of the 26" Symposium on Operating Systems Principles (2017), 34-50.

[2] Benjamin H. Sigelman et al., 2010. Dapper, a Large-Scale Distributed Systems Tracing Infrastructure.
Technical Report. Google Inc.

[3] Jaegertracing.io. 2022. Jaeger: Open Source, End-to-End Distributed Tracing. http://jaegertracing.io
[4] Zipkin.io. 2022. Zipkin. https://zipkin.io

[5] Donghun Cha et al., 2021. Service Mesh Based Distributed Tracing System. International Conference on
Information and Communication Technology Convergence (2021).

[6] Chih-Cheng Hung et al., 2019. Transparent tracing of microservice-based applications. Proceedings of the 34th
ACM/SIGAPP Symposium on Applied Computing (2019).

[7] Loic Gelle et al., 2021. Combining Distributed and Kernel Tracing for Performance Analysis of Cloud
Applications. Electronics 10, 21 (2021), 2610.

[8] Harshal Sheth and Andrew Sun. 2018. Skua: Extending Distributed-Systems Tracing into the Linux Kernel. In
Proceedings of the DevConf.US. 17-19.

[9] OpenTelemetry CNCF. 2022. Astronomy Shop, the OpenTelemetry Demo.
https://github.com/open-telemetry/opentelemetry-demo

POLYTECHNIQUE MONTREAL - Adel Belkhiri


http://jaegertracing.io/
https://zipkin.io/
https://github.com/open-telemetry/opentelemetry-demo

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

