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● It presents indeed many advantages .. but complicates the debugging of latency-
related problems :/

● Microservices is a software architecture in which the application is implemented as a 
collection of small, independent, and loosely-coupled services that communicate through 
well-defined interfaces (e.g., RESTful APIs)

Microservice Architecture
IntroductionIntroduction        Motivation        Literature Review        Proposed Solution        Conclusion
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Figure: Monolithic architecture vs. microservices
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●  Recording low-level information about a program execution, as a series of events

●  Each event is characterized by a name, timestamp, and payload (e.g., values of a program 
variables)

●  Tracers are powerful tools that are widely used for diagnosing applications performance 
bugs

Software Tracing (1)
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Figure: Analogy between a program and a bike, where instrumentation is like painting the bike's tires!
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●  There exist many tracers with different tracing capabilities and scopes:

   –   Standalone applications: Ftrace, Systemtap, Uftrace, Dtrace, and LTTng

    –   Distributed applications: Jaeger and Zipkin

  Span:  A tagged time interval denoting the execution latency of a particular operation 
(e.g., RPC or function calls)

IntroductionIntroduction        Motivation        Literature Review        Proposed Solution        Conclusion

Software Tracing (2)

Figure: Reference architecture for a distributed tracer
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Software Tracing (3)

Figure: Jaeger UI showing microservices involved in processing a user request
(a ride order) along with resulted spans



●  Problem: Distributed tracers can pinpoint slow services and detect latency-related 
problems, but cannot be used for identifying the causes of performance issues
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Motivation 
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●  Solution: A framework for annotating traces generated by distributed tracers with 
useful information extracted from the Linux kernel 
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●   Literature reports many open-source and proprietary tracing tools, such as Canopy [1], 
Dapper [2], Jaeger [3], and Zipkin [4]

 –  Cannot diagnose the causes of latency-related problems as they only leverage high-
level data

●   Frameworks in [5] and [6] attach sidecars (e.g., Istio/Envoy) to containers to extract 
metadata from microservices requests and generate tracing data.

   –  Only eliminate the need to instrument the application’s source code to generate 
traces

●   Frameworks in [5] and [6] propose cross-layer tracing for collecting and synchronizing 
kernel and distributed request events, using patched Jaeger clients and Linux Kernel

–  Very intrusive as they require the modification of the tracer and the Kernel
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Literature Analysis
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●    Span latency tracker 

    –   Add annotation to long-lasting spans generated by monitored microservices to help 
understand the causes of unusual latencies 

           –   Annotation is derived from kernel events: system calls, application/kernel call stack,  and 
system wide metrics (example: average preemption time of threads)

    –  Architecture:

1)   A set of monitoring libraries to preload, depending on the programming languages in 
which microservices were implemented (C++, GO, Python, etc.)

2)   Three kernel modules: span-latency-tracker.ko, latency-begin-end.ko, and latency-
tracker.ko
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The Span Latency Tracker Framework
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Framework Architecture  

Figure: Proposed framework is composed of kernel modules and a set of monitoring libraries to 
pre-load when launching microservices
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Proposed Framework  

Figure: Annotating CurrencyService/Convert operation with the system calls executed within it

●  The tool is very customizable: traces can be annotated with a subset of system calls of 
interest, user can choose which data to use for annotation and set a latency threshold for spans 
to be tracked, etc.

●  System calls are added as sub-spans, and callstacks and metric values as span attributes 
and events

Introduction        Motivation        Literature Review        Proposed SolutionProposed Solution        Conclusion

Our framework annotate the trace with the system calls
executed within spans
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Results & Discussion (1)

Fig. A: Execution time when tracing is not enabled, 
traced with Jaeger, and traced with our tool.

Fig. B: Execution time depending on the numbers 
of requests and injected system calls per span.
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● Overhead analysis based on the evaluation of the Astronomy Shop [9] application performance.
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Results & Discussion (2)
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● Advantages:

–   Proposed framework can be coupled with any distributed tracer that support OpenTelemetry

–   Non-intrusive approach for annotating traces

● Limitations

–    Incapacity to intercept system calls of the vDSO type.

–    Microservices written in bytecode-based languages (Java) are not supported yet.



●   Framework for annotating distributed traces with information derived from kernel events

●   Particularly efficient in diagnosing the causes of long-tail latencies

●   Open-source*, non-intrusive, and induces low-overhead

Future Work 

1)   Extend the annotation mechanism to support bytecode-based microservices

2)   Include more metrics and information into the trace annotation

Conclusion 
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*Authors’ GitHub : https://github.com/adel-belkhiri

This project is a 
work in progress, so 
if you have ideas on 
how to improve it, 
please let us know!

https://github.com/adel-belkhiri
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Questions?
adel.belkhiri@polymtl.ca
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