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Microservice Architecture

* Microservices is a software architecture in which the application is implemented as a
collection of small, independent, and loosely-coupled services that communicate through
well-defined interfaces (e.g., RESTful APIs)

MICROSERVICE

MONOLITH APP

) COMM. INTERFACE

Figure: Monolithic architecture vs. microservices

* It presents indeed many advantages .. but complicates the debugging of latency-
related problems :/
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Software Tracing (1)

* Recording low-level information about a program execution, as a series of events

* FEach event is characterized by a name, timestamp, and payload (e.g., values of a program
variables)

* Tracers are powerful tools that are widely used for diagnosing applications performance
bugs

Program

instrumentation

\\ \\ event_2 } Trace

event_1

Figure: Analogy between a program and a bike, where instrumentation is like painting the bike's tires!
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Software Tracing (2)

* There exist many tracers with different tracing capabilities and scopes:
— Standalone applications: Ftrace, Systemtap, Uftrace, Dtrace, and LTTng
— Distributed applications: Jaeger and Zipkin

o Span: A tagged time interval denoting the execution latency of a particular operation
(e.g., RPC or function calls)
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Figure: Reference architecture for a distributed tracer
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Software Tracing (3)
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Figure: Jaeger Ul showing microservices involved in processing a user request
(a ride order) along with resulted spans
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Motivation

(>

* Problem: Distributed tracers can pinpoint slow services and detect latency-related
problems, but cannot be used for identifying the causes of performance issues

* Solution: A framework for annotating traces generated by distributed tracers with
useful information extracted from the Linux kernel
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Literature Analysis

* Literature reports many open-source and proprietary tracing tools, such as Canopy [1],
Dapper [2], Jaeger [3], and Zipkin [4]

— Cannot diagnose the causes of latency-related problems as they only leverage high-
level data

* Frameworks in [5] and [6] attach sidecars (e.g., Istio/Envoy) to containers to extract
metadata from microservices requests and generate tracing data.

— Only eliminate the need to instrument the application’s source code to generate
traces

* Frameworks in [5] and [6] propose cross-layer tracing for collecting and synchronizing
kernel and distributed request events, using patched Jaeger clients and Linux Kernel

— Very intrusive as they require the modification of the tracer and the Kernel

HESL Lab & HUMANITAS - ICPE 2023 - Adel Belkhiri 8




Introduction Motivation Literature Review Conclusion

The Span Latency Tracker Framework

* Span latency tracker

— Add annotation to long-lasting spans generated by monitored microservices to help
understand the causes of unusual latencies

— Annotation is derived from kernel events: system calls, application/kernel call stack, and
system wide metrics (example: average preemption time of threads)

— Architecture:

1) A set of monitoring libraries to preload, depending on the programming languages in
which microservices were implemented (C++, GO, Python, etc.)

2) Three kernel modules: span-latency-tracker.ko, latency-begin-end.ko, and latency-
tracker.ko
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Framework Architecture
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Figure: Proposed framework is composed of kernel modules and a set of monitoring libraries to
pre-load when launching microservices
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Proposed Framework
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Figure: Annotating CurrencyService/Convert operation with the system calls executed within it

* System calls are added as sub-spans, and callstacks and metric values as span attributes
and events

* The tool is very customizable: traces can be annotated with a subset of system calls of
interest, user can choose which data to use for annotation and set a latency threshold for spans
to be tracked, etc.
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Results & Discussion (1)

* Overhead analysis based on the evaluation of the Astronomy Shop [9] application performance.
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Fig. A: Execution time when tracing is not enabled, Fig. B: Execution time depending on the numbers
traced with Jaeger, and traced with our tool. of requests and injected system calls per span.
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Results & Discussion (2)

-_— ZIPKIN

* Advantages:
— Proposed framework can be coupled with any distributed tracer that support OpenTelemetry

— Non-intrusive approach for annotating traces

* Limitations
— Incapacity to intercept system calls of the vDSO type.

— Microservices written in bytecode-based languages (Java) are not supported yet.
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Conclusion

* Framework for annotating distributed traces with information derived from kernel events
* Particularly efficient in diagnosing the causes of long-tail latencies

* Open-source*, non-intrusive, and induces low-overhead

Future Work

1) Extend the annotation mechanism to support bytecode-based microservices

2) Include more metrics and information into the trace annotation

This project is a
work in progress, so
if you have ideas on
how to improve it,
please let us know!
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*Authors’ GitHub : https://github.com/adel-belkhiri
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https://github.com/adel-belkhiri

Questions?

adel.belkhiri@polymtl.ca
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