
Transparent Trace Annotation for Performance Debugging Transparent Trace Annotation for Performance Debugging
in Microservice-oriented Systemsin Microservice-oriented Systems

(Work In Progress Paper)(Work In Progress Paper)

 14th ACM/SPEC International Conference on Performance Engineering (ICPE)
Coimbra, Portugal, April 15-19, 2023

Adel Belkhiri, Ahmad S. Bushehri, Felipe G. de Magalhaes, and Gabriela NicolescuAdel Belkhiri, Ahmad S. Bushehri, Felipe G. de Magalhaes, and Gabriela Nicolescu

HESL Lab. (Polytechnique Montréal) HESL Lab. (Polytechnique Montréal) && HUMANITAS Inc. HUMANITAS Inc.

IIntroduction

 > The microservice architecture

 > Software tracing and performance debugging

MMotivation

LLiterature analysis

PProposed solution: framework for a transparent annotation of traces

CConclusion and future work

2

Agenda

IntroductionIntroduction Investigations Use Cases Conclusion

 HESL Lab & HUMANITAS - ICPE 2023 - Adel Belkhiri 2

3

● It presents indeed many advantages .. but complicates the debugging of latency-
related problems :/

● Microservices is a software architecture in which the application is implemented as a
collection of small, independent, and loosely-coupled services that communicate through
well-defined interfaces (e.g., RESTful APIs)

Microservice Architecture
IntroductionIntroduction Motivation Literature Review Proposed Solution Conclusion

 HESL Lab & HUMANITAS - ICPE 2023 - Adel Belkhiri 3

Figure: Monolithic architecture vs. microservices

3

● Recording low-level information about a program execution, as a series of events

● Each event is characterized by a name, timestamp, and payload (e.g., values of a program
variables)

● Tracers are powerful tools that are widely used for diagnosing applications performance
bugs

Software Tracing (1)

 HESL Lab & HUMANITAS - ICPE 2023 - Adel Belkhiri 4

IntroductionIntroduction Motivation Literature Review Proposed Solution Conclusion

Figure: Analogy between a program and a bike, where instrumentation is like painting the bike's tires!

3 HESL Lab & HUMANITAS - ICPE 2023 - Adel Belkhiri 5

● There exist many tracers with different tracing capabilities and scopes:

 – Standalone applications: Ftrace, Systemtap, Uftrace, Dtrace, and LTTng

 – Distributed applications: Jaeger and Zipkin

 Span: A tagged time interval denoting the execution latency of a particular operation
(e.g., RPC or function calls)

IntroductionIntroduction Motivation Literature Review Proposed Solution Conclusion

Software Tracing (2)

Figure: Reference architecture for a distributed tracer

3 HESL Lab & HUMANITAS - ICPE 2023 - Adel Belkhiri 6

IntroductionIntroduction Motivation Literature Review Proposed Solution Conclusion

Software Tracing (3)

Figure: Jaeger UI showing microservices involved in processing a user request
(a ride order) along with resulted spans

● Problem: Distributed tracers can pinpoint slow services and detect latency-related
problems, but cannot be used for identifying the causes of performance issues

7

Motivation

Introduction MotivationMotivation Literature Review Proposed Solution Conclusion

● Solution: A framework for annotating traces generated by distributed tracers with
useful information extracted from the Linux kernel

 HESL Lab & HUMANITAS - ICPE 2023 - Adel Belkhiri 7

● Literature reports many open-source and proprietary tracing tools, such as Canopy [1],
Dapper [2], Jaeger [3], and Zipkin [4]

 – Cannot diagnose the causes of latency-related problems as they only leverage high-
level data

● Frameworks in [5] and [6] attach sidecars (e.g., Istio/Envoy) to containers to extract
metadata from microservices requests and generate tracing data.

 – Only eliminate the need to instrument the application’s source code to generate
traces

● Frameworks in [5] and [6] propose cross-layer tracing for collecting and synchronizing
kernel and distributed request events, using patched Jaeger clients and Linux Kernel

– Very intrusive as they require the modification of the tracer and the Kernel

8

Literature Analysis
Introduction Motivation LiteratureLiterature ReviewReview Proposed Solution Conclusion

 HESL Lab & HUMANITAS - ICPE 2023 - Adel Belkhiri 8

● Span latency tracker

 – Add annotation to long-lasting spans generated by monitored microservices to help
understand the causes of unusual latencies

 – Annotation is derived from kernel events: system calls, application/kernel call stack, and
system wide metrics (example: average preemption time of threads)

 – Architecture:

1) A set of monitoring libraries to preload, depending on the programming languages in
which microservices were implemented (C++, GO, Python, etc.)

2) Three kernel modules: span-latency-tracker.ko, latency-begin-end.ko, and latency-
tracker.ko

9

The Span Latency Tracker Framework
Introduction Motivation Literature Review Proposed SolutionProposed Solution Conclusion

 HESL Lab & HUMANITAS - ICPE 2023 - Adel Belkhiri 9

10

Framework Architecture

Figure: Proposed framework is composed of kernel modules and a set of monitoring libraries to
pre-load when launching microservices

Introduction Motivation Literature Review Proposed SolutionProposed Solution Conclusion

 HESL Lab & HUMANITAS - ICPE 2023 - Adel Belkhiri 10

11

Proposed Framework

Figure: Annotating CurrencyService/Convert operation with the system calls executed within it

● The tool is very customizable: traces can be annotated with a subset of system calls of
interest, user can choose which data to use for annotation and set a latency threshold for spans
to be tracked, etc.

● System calls are added as sub-spans, and callstacks and metric values as span attributes
and events

Introduction Motivation Literature Review Proposed SolutionProposed Solution Conclusion

Our framework annotate the trace with the system calls
executed within spans

 HESL Lab & HUMANITAS - ICPE 2023 - Adel Belkhiri 11

12

Results & Discussion (1)

Fig. A: Execution time when tracing is not enabled,
traced with Jaeger, and traced with our tool.

Fig. B: Execution time depending on the numbers
of requests and injected system calls per span.

Introduction Motivation Literature Review Proposed SolutionProposed Solution Conclusion

● Overhead analysis based on the evaluation of the Astronomy Shop [9] application performance.

 HESL Lab & HUMANITAS - ICPE 2023 - Adel Belkhiri 12

12

Results & Discussion (2)
Introduction Motivation Literature Review Proposed SolutionProposed Solution Conclusion

 HESL Lab & HUMANITAS - ICPE 2023 - Adel Belkhiri 13

● Advantages:

– Proposed framework can be coupled with any distributed tracer that support OpenTelemetry

– Non-intrusive approach for annotating traces

● Limitations

– Incapacity to intercept system calls of the vDSO type.

– Microservices written in bytecode-based languages (Java) are not supported yet.

● Framework for annotating distributed traces with information derived from kernel events

● Particularly efficient in diagnosing the causes of long-tail latencies

● Open-source*, non-intrusive, and induces low-overhead

Future Work

1) Extend the annotation mechanism to support bytecode-based microservices

2) Include more metrics and information into the trace annotation

Conclusion

13

Introduction Motivation Literature Review Proposed Solution ConclusionConclusion

 HESL Lab & HUMANITAS - ICPE 2023 - Adel Belkhiri 14

*Authors’ GitHub : https://github.com/adel-belkhiri

This project is a
work in progress, so
if you have ideas on
how to improve it,
please let us know!

https://github.com/adel-belkhiri

 HESL Lab & HUMANITAS - ICPE 2023 - Adel Belkhiri

Questions?
adel.belkhiri@polymtl.ca

POLYTECHNIQUE MONTREAL – Adel Belkhiri

[1] Jonathan Kaldor et al., 2017. Canopy: An End-to-End Performance Tracing And Analysis System. Proceedings
of the 26th Symposium on Operating Systems Principles (2017), 34–50.

[2] Benjamin H. Sigelman et al., 2010. Dapper, a Large-Scale Distributed Systems Tracing Infrastructure.
Technical Report. Google Inc.

[3] Jaegertracing.io. 2022. Jaeger: Open Source, End-to-End Distributed Tracing. http://jaegertracing.io

[4] Zipkin.io. 2022. Zipkin. https://zipkin.io

[5] Donghun Cha et al., 2021. Service Mesh Based Distributed Tracing System. International Conference on
Information and Communication Technology Convergence (2021).

[6] Chih-Cheng Hung et al., 2019. Transparent tracing of microservice-based applications. Proceedings of the 34th
ACM/SIGAPP Symposium on Applied Computing (2019).

[7] Loïc Gelle et al., 2021. Combining Distributed and Kernel Tracing for Performance Analysis of Cloud
Applications. Electronics 10, 21 (2021), 2610.

[8] Harshal Sheth and Andrew Sun. 2018. Skua: Extending Distributed-Systems Tracing into the Linux Kernel. In
Proceedings of the DevConf.US. 17–19.

[9] OpenTelemetry CNCF. 2022. Astronomy Shop, the OpenTelemetry Demo.
https://github.com/open-telemetry/opentelemetry-demo

Bibliographie

http://jaegertracing.io/
https://zipkin.io/
https://github.com/open-telemetry/opentelemetry-demo

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

