
Enhancing the Configuration Tuning Pipeline of Large-Scale 
Distributed Applications Using Large Language Models 

(Idea Paper)

Gagan Somashekar*, Rajat Kumar*

1

*equal contribution



• Microservices architecture is replacing monolithic or multi-tier 
architecture
• Performance is crucial as these are usually customer-facing 

applications

Introduction

Image source: Gan et al., ASPLOS’192



Motivation
• Performance depends on the configuration of the application (here, 

social networking application)
• C1 – only worker_process tuned
• C2 – all parameters jointly tuned
• C3 – all parameters tuned but 

worker_process assigned a bad value

3



Motivation

• The first-step of configuration tuning – parameters’ meta-data 
extraction
• name, range, default, dependencies, etc.

• A stage that should be revisited
• Application architecture
• Software updates – parameter addition, deprecation
• Deployment and hardware changes

4



Motivation

• Very large configuration space.
• n – number of microservices
• p – parameters per microservice
• c – number of configurations per parameter
• Total possible configurations ≈ 𝒄𝒏∗𝒑

• Parameter dependencies are crucial for reducing 
configuration search space
• Absolute – Redis’ “maxmemory” and “maxmemory-policy”
• Partial – Redis’ “maxmemory” and container’s “mem-limit”
• Performance – MongoDB’s “concurrent_reads” and “cache_size”

5



Motivation
• The meta-data of the parameters is found in
• Product manuals, blogs, etc.
• Source code and documentation

• Experimental feedback necessary to ascertain certain meta-data
• Nginx “threads” and “max_queue” parameters 

• A practitioner “understands” crucial information in
the product manuals and, guided by empirical observations and
telemetry, tunes the application to obtain optimal results

6

Can automatically extracted meta-data be coupled with 
experimental feedback to enhance configuration tuning pipeline 

in large-scale distributed applications? 



Related Work

• DB-BERT
• SafeTune
• SPEX
• Prior works don’t utilize the full potential of NLP as they don’t:
• Perform fully automated and exhaustive mining of text 
• Utilize language models for learning new associations and dependencies 

based on experimental feedback. 

7



Proposal

• Meta-data extraction using a targeted language model
• Enhance the configuration tuning pipeline using the LLM
• In-house knowledge system

Large Language Models (LLMs) for enhancing the 
configuration tuning pipeline!

8



Envisioned Pipeline

9

Config

Product Manuals, etc.

Experimental Data and 
workload characteristics

Prompt Generator

Domain 
Adapted LLM

Parameter Meta-data

Optional Training

Tuning Algorithm
Application N

Application 2Application 1

1 2

3

4

Workload
5

6
7



LLMs in Configuration Tuning

10

… a car is … … …

Masked Multi Self Attention

Layer Norm

Feed Forward

Layer Norm

+

a car is … … … EOS

Text & Position Embed

+

N x

Pretrained 
Language 

Model

Domain Adaptation

Gradual Task Adaptation

Domain 
Adapted 

Language Model

Product Manuals, Developer articles, etc. Experimental Data



LLMs in Configuration Tuning

• Domain adaptation
• Mitigate against domain shift

• Prompt engineering
• “The default value of ldapUserCacheStalenessInterval is”

• Building an in-house knowledge system
• {"prompt": "<verbal description of the workload and the architecture of the 

application >", "completion": "<optimal subset of parameters>"} 

11



Planned Evaluation and Conclusion

• Quality of meta-data generated 
• Developer hours saved
• Quality of impactful parameters
• Generalization

12


