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 Cyber-physical Systems are compositions of software and 
hardware components
● Sensors, actuators, controllers, storage, processing units, etc
● Outputs of some components are used as inputs of other components

● Becoming data-driven designs
● Behavior is sensitive to the quality of data
● Sensing is subject to errors

 Predictors
● Assess data quality
● Derive new variables
● Replace faulty data

 Predictors can be interdependent
● What are the impacts of prediction interdependence?

Introduction
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Predictors
 Multivariate ANN models
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LISHA’s Secure IoT+AI Platform
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A Word on ML for CPS

We love the 3σ rule: 68-95-99.7%!
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The 2σ rule! Who cares for those 5% anyway?
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We have very solid models for what happens within the 3σ!

A Word on ML for CPS
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ML is often handling the missing cases!
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Predictors for Confidence Attribution
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Predictors for Anomalies in Wind Turbines
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Predictors for Anomalies 
in Hydroelectric Plants
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Predictors for Engine Calibration
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Predictors for AV Control
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Predictors for AV Control
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Predictors for Data Imputation

Replace missing data by 
high-confidence predicted 
values!
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Predictors for Seismic Data Compressor

50 TB per survey, virtually no communication!

Can we delete data and recover them with predictors?
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Problem Definition
 Typical mechanisms to evaluate Predictors

● Accuracy (e.g., MSE, MAE, RMSE)
● Computing power (e.g., cycles, committed instructions, cache misses)

 As pointed by Yang and others in 2020, such evaluations usually 
consider Independent and Identically Distributed Variables

 Sensing is subject to errors
● Datasets often contain bad data

 How can we evaluate interdependent predictors accounting for 
the impacts of prediction error propagation?
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Proposed Solution
 This work proposes a method to estimate the impact of using 

predicted values as input for a multivariate predictor based on 
the stability of a general dynamic system

 Predictor is a function vi = gi(xi)
● xi vector of inputs
● vi scalar quantity prediction for ith variable in a set

 gi is assumed to be infinitely differentiable
● Sigmoid, Hyperbolic Tangent, Softmax, Swish and CoLU (but not ReLU)

 gi expanded into a Taylor series 
● Evaluate error propagation dynamics over the Taylor series to verify 

error boundedness
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Procedure for Analysis
 The gradient of gi is

 Considering the deviation of the predictor’s input is small, or gi 
resembles a linear function, we can truncate the Taylor series to 
the first order terms
● Other terms would be negligible 
● The deviation of the prediction can be related to the deviation of the 

input
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Procedure for Analysis
 Considering the N components of the input vector, the error can 

be summarized as

 Using a linear approximation for linear time-invariant system
● Predictor gradient changes

● Bounded in absolute value (worst-case)
● Error propagation Dynamics
● Bounded-Input Bounded-Output (BIBO) stability (property of linear systems)
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Types of Predictor Interdependence

Cascade Prediction

Feedback Prediction

Loop Prediction
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Estimation Error Stability Conditions
 The propagation of error has different impacts for each of the 

presented scenarios
 Considering stability as the boundedness of the error 

propagation
● Cascade chains are stable (as long as there are a finite set of 

predictors)
● Loop and Feedback scenarios are infinite due to recurrent predictions 

(cicle)
 Even in a stable propagation, the error can eventually exceed 

the tolerance defined by the application
● We can track the estimated error and decide whether a new prediction 

is believed to exceed this margin or not following the equation for the 
prediction error
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Estimation Error Stability Conditions

Always Stable

Feedback Prediction
Cascade Prediction Loop Prediction
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Case Study
 Dataset

● Hydraulic test rig (Helwig et al., 2015)

 Model Generation
● Person Correlation
● K features
● Autoregressive and 

non-autoregressive

Autoregressive FS Non-autoregressive FS
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 MPW to PS1
● Input impact on predictor

Results – Cascade Configuration
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Results – Stable Feedback Configuration
 PS6

● Calculate z following feedback stability condition
● Z ≤ 1
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Results – Unstable Feedback Configuration
 PS2

● Calculate z following feedback stability condition
● Z ≥ 1
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Results – Stable Loop Configuration
 PS5 and PS6 (ps5→ps6, ps6→ps5)

● Calculate z following loop stability condition
● Z ≤ 1
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Results – Unstable Loop Configuration
 PS1 and MPW

● Calculate z following loop stability condition
● Z ≥ 1
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Final Remarks
 This work presented an strategy to evaluate a predictor based 

on its ability to sustain accurate predictions when its inputs are 
replaced by predictions and face the impacts of prediction error

 Different datasets impact prediction accuracy
● Mathematical analysis is valid as long as the activation function is 

infinitely differentiable
● We do not evaluate the predictor’s accuracy but the fact it is able to 

maintain it when dealing with inputs that are predicted data
● Boundedness

 Dataset variability / Input variability
● Will affect model quality

● Boundedness still follows the mathematical analysis
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