Predicting Inference Latency of Neural Architectures on Mobile Devices

Zhuojin Li

Marco Paolieri

Leana Golubchik

ICPE, April 18, 2023

Background: ML Inference on Mobile Devices

[Krizhevsky et al., 2012]

2

Background: Neural Architecture Search (NAS)

Challenges of Prediction Models

Li, Paolieri, Golubchik Predicting Inference Latency of Neural Architectures on Mobile Devices QED Research Group | qed.usc.edu 4

Challenge (1/3): NA Diversity

Example of Search Space

A latency *lookup-table* is **infeasible** when the search space is huge e.g., the search space size in *Once-for-all* [Cai et al., 2019] is over 10¹⁹

Solution: Comprehensive NAS Dataset

- Building Blocks from SOTA Literature
 - > 1) Convolution
 - > 2) Depthwise Separable Convolution [Howard et al., 2017]
 - > 3) Linear Bottleneck [Sandler et al, 2018]
 - w/ Squeeze-and-Excite [Howard et al., 2017]
 - ≻ 4) Average/Max Pooling
 - > 5) Split and Concatenation

Challenge (2/3): ML Framework Optimizations

Kernel Fusion

Hardware-dependent!

Important to identify how many and which specific kernels are executed on mobile GPUs

Solution: Characterization of Kernel Selection/Fusion

Challenge (3/3): Hardware Heterogeneity (GPU)

Heterogeneous Mobile GPU Architectures

Challenge (3/3): Hardware Heterogeneity (CPU)

Solution: Component-based Predictors

Build separate ML predictor for each (Platform, Configuration, Operation Type)

Operations	Features
Conv2D, Depthwise-Conv2D	Input height (width), input channel, output height (width), stride, kernel height (width), filters, group size, input size, output size, kernel size, FLOPs
Fully-Connected	Input channel, filters, parameter size, FLOPs
Max/Average Pooling	Input height (width), input channel, output height (width), stride, kernel height (width), input size, output size, FLOPs

Solution (cont.): Explore different ML approaches

- Linear
 - ➤ Lasso w/ non-negative weights [Tibshirani, 1996]
- Non-linear
 - Random Forest (RF) [Ho, 1995]
 - Gradient-Boosted Decision Tree (GBDT) [Friedman, 2001]
 - Multi-Layer Perceptron (MLP) [Haykin, 1994]

Summary of Key Ideas

To accurately predict the latency of NAs on mobile devices

Experimental setup

- ML workloads
 - > 102 Real-world NAs
 - > 1000 Synthetic NAs
- 6 hardware platforms
 Android + iOS
- ML framework: TFLite v2.10

Device	Platform	CPU	GPU
Google Pixel 4	Snapdragon 855	1x Large (2.84 GHz) 3x Medium (2.32 GHz) 4x Small (1.80GHz)	Adreno 640
Xiaomi Mi 8 SE	Snapdragon 710	2x Large (2.20 GHz) 6x Small (1.70 GHz)	Adreno 616
Samsung Galaxy S10	Exynos 9820	2x Large (2.73 GHz) 2x Medium (2.31 GHz) 4x Small (1.95 GHz)	Mali G76
Samsung Galaxy A03s	Helio P35	4x Large (2.30 GHz) 4x Small (1.80 GHz)	PowerVR GE8320
Apple iPhone XS	A12 Bionic	2x Large (2.49 GHz) 4x Small (1.52 GHz)	Apple-designed G11P
Apple iPhone 7	A10 Fusion	2x Large (2.34 GHz) 2x Small (1.05 GHz)	PowerVR GT7600 Plus (Custom)

Results (1/6): Default Setting

- Evaluate candidate NAs during search across six platforms
 - Training: 900 synthetic NAs
 - ➤ Test: 100 synthetic NAs
 - Metric: Mean Average Percentage Error (MAPE)

Method	MAPE (CPU)	MAPE (GPU)
Lasso	11.2%	9.4%
RF	2.8%	5.5%
GBDT	2.4%	5.2%
MLP	2.8%	5.1%

Non-linear ML methods achieve accurate end-to-end latency predictions on both CPUs and GPUs

Results (2/6): Hardware Heterogeneity

- Device: Apple A12 Bionic
- ML method: GBDT

Training: 900 synthetic NAs Test: 100 synthetic NAs

Maximum MAPE of 10.5% across all configurations on six devices

Measurement variance can affect prediction accuracy

Coefficient of Variation (CV) for Latency Measurements

Results (3/6): NA Diversity

- Different distributions between training and test datasets
 - Training: 900 synthetic NAs
 - ➤ Test: 102 real-world NAs

Method	MAPE (CPU)	MAPE (GPU)
Lasso	5.4%	7.9%
RF	6.1%	6.8%
GBDT	6.0%	7.0%
MLP	11.6%	8.7%

Accurate predictions under dataset shift between training and test data

Results (4/6): ML Framework Optimizations

Device: PowerVR GE8320 GPU

Kernel Fusion

Kernel Selection

Method	MAPE (w/ Fusion)	MAPE (w/o Fusion)	Method	MAPE* (w/ Select)	MAPE* (w/o Select)
Lasso	6.1%	13.6%	Lasso	2.1%	14.0%
RF	6.1%	16.5%	RF	3.2%	8.9%
GBDT	6.2%	17.1%	GBDT	2.0%	9.1%
MLP	8.2%	21.0%	MLP	5.2%	7.9%

* for real-world NAs that support Winograd kernels

Substantial error reduction across all ML approaches by accurately characterizing kernel fusion and selection

Results (5/6): Limited Training Data

- ML method: GBDT
 - Training: 30/100/900 synthetic NAs
 - ➤ Test: 100 synthetic NAs

Training Size	MAPE (CPU)	MAPE (GPU)	
30	8.1%	8.6%	
100	5.1%	6.9%	
900	2.4%	5.2%	

Sufficiently accurate predictions with only 30 NAs

The cost of profiling 30 NAs for training is **negligible** compared to measuring thousands of candidate NAs

Results (6/6): Comparison to State-of-the-art

Training Dataset	MAPE (CPU)	MAPE (GPU)	
NATSBench	56.2%	57.7%	
Ours (Synthetic)	3.3%	5.1%	

Comparison with Dataset: NATSBench [Dong et al., 2021] (Training: 1000 NAs; Test: 44 real-world NAs w/o DW-Conv; Predictor: GBDT)

	Test: Synt	thetic NAs	Test: Real·	world NAs
Predictors	MAPE (CPU)	MAPE (GPU)	MAPE (CPU)	MAPE (GPU)
NN-Meter	14.1%	24.9%	8.5%	41.5%
Ours (GBDT)	2.4%	6.3%	6.3%	7.6%

Comparison with Predictor: NN-Meter [Zhang et al., 2021] (Training: 1000 synthetic NAs)

Summary of Contributions

- Identified aspects of NAs, HW and ML frameworks that substantially affect latency
- Developed a synthetic dataset that provides broader coverage than SOTA
 - Latency measurements under 90 scenarios across 6 mainstream mobile platforms
- Developed a framework for accurately predicting end-to-end latency without deploying and compiling on actual devices with negligible profiling time