Newcastle 20
University W Durham

University

\

Predicting the
Performance of a
Computing System
with Deep Networks

Mehmet Cengiz — m.cengiz2@newcastle.ac.uk
Matthew Forshaw — matthew.forshaw@newcastle.ac.uk
Amir Atapour-Abarghouei — amir.atapour-abarghouei@durham.ac.uk

Andrew Stephen McGough — stephen.mcgough@newcastle.ac.uk

14th ACM/SPEC International Conference on Performance Engineering (ICPE) / 18.04.2023

Outline

* Problem and approach
* The data

* Data preparation

* Deep Learning models
* Results

* Conclusions

Predicting SPEC CPU 2017 scores for new computers

BEEENE) SPECCPU 2017 score

Predicting SPEC CPU 2017 scores for new computers

BEEENE) SPECCPU 2017 score

Predicting SPEC CPU 2017 scores for new computers

BEEENE) SPECCPU 2017 score

Filling in the gaps with Machine Learning

 Benchmarking systems is costly
e Time to conduct tests
* Financial (hardware + software)

* Machine Learning is promising alternative to building and testing
* Especially Deep Learning

 We demonstrate the potential of deep learning for predicting performance
e using Multi-layer Perceptrons and Convolutional Neural Networks

) SPEC 2017 score

2\ ‘/4\\ ‘/4\\ ‘/4\\ ‘/4\\ ‘/4\\
))))))
NN N NI AN AN

Outline

* Problem and approach
* The data

* Data preparation

* Deep Learning models
* Results

 Conclusions

Features in SPEC CPU 2017 dataset

Data Type Column

String Benchmark, Hardware Vendor, System, 34 attributes / features
Processor, CPU(s) Orderable, 1st Level Cache,
2nd Level Cache, 3rd Level Cache, Other Cache,
Storage, Operating System, File System,
Compiler, License, Tested By, Test Sponsor

Numerical = Peak Result, Base Result, Energy Peak Result,
Energy Base Result, # Cores, # Chips, Memory,
Enabled Threads Per Core, Processor MHz

Binary Parallel

Ternary Base Pointer Size
Quaternary Peak Pointer Size
Date HW Avail, SW Avail, Test Date, Published,

(mon-yyyy) Updated

Text Disclosures

Features in SPEC CPU 2017 dataset

Data Type Column

String Benchmark, Hardware Vendor, System, 34 attributes / features
Processor, CPU(s) Orderable, 1st Level Cache,
2nd Level Cache, 3rd Level Cache, Other Cache,
Storage, Operating System, File System,
Compiler, License, Tested By, Test Sponsor

Numerical Peak Result, Base Result, Energy Peak Result,
Energy Base Result, # Cores, # Chips, Memory,
Enabled Threads Per Core, Processor MHz

Best result with optimization

Binary Parallel

Ternary Base Pointer Size
Quaternary Peak Pointer Size
Date HW Avail, SW Avail, Test Date, Published,

(mon-yyyy) Updated

Text Disclosures

Features in SPEC CPU 2017 dataset

Data Type Column

String Benchmark, Hardware Vendor, System, 34 attributes / features
Processor, CPU(s) Orderable, 1st Level Cache,
2nd Level Cache, 3rd Level Cache, Other Cache,
Storage, Operating System, File System,
Compiler, License, Tested By, Test Sponsor

Peak Result, Base Result, Energy Peak Result,

Numerical Best t with R
Energy Base Result, # Cores; ins, Memory;, est result with optimization
Enabled Threads Per Core, Processor MHz

Result with no optimization

Binary Parallel

Ternary Base Pointer Size
Quaternary Peak Pointer Size
Date HW Avail, SW Avail, Test Date, Published,

(mon-yyyy) Updated

Text Disclosures

Features in SPEC CPU 2017 dataset

Data Type Column
String Benchmark, Hardware Vendor, System, 34 attributes / features
Processor, CPU(s) Orderable, 1st Level Cache,
2nd Level Cache, 3rd Level Cache, Other Cache,
Storage, Operating System, File System,
Compiler, License, Tested By, Test Sponsor
Numerical Peak Result, Base Result, Energy Peak Result,) .)
M Best result with optimization
Enabled Threads Per Core, Processor MHz Result with no optimization
Binary Parallel
Ternary Base Pointer Size What we’ll
Quaternary Peak Pointer Size oredict
Date HW Avail, SW Avail, Test Date, Published,
(mon-yyyy) Updated
Text Disclosures

SPEC CPU 2017 Data example

Benchmark = "CINT2017', 2nd Level Cache ="512 KB I+D on chip per core',

Hardware Vendor = 'ASUSTeK Computer Inc., 3rd Level Cache ="256 MB |+D on chip per chip, 16 MB shared / 4 cores’,

System = 'ASUS ESC4000A-E10(KRPG-U8) Server System 2.60 GHz, AMD EPYC 7H12', Other Cache ='None,

Peak Result = 9.09, Memory ="512 GB (8 x 64 GB 2Rx4 PC4-3200AA-R)',

Base Result = 8.87, Storage = "1 x 480 GB SATA SSD/,

Energy Peak Result = 0.0, Operating System = 'Ubuntu 19.04 (x86_64), Kernel 5.0.0-20-generic’,

Energy Base Result = 0.0, File System =ext4,

Cores = 64, Compiler = 'C/C++/Fortran: Version 2.0.0 of AOCC,

Chips = 1, HW Avail = 'Jul-2020',

Enabled Threads Per Core = 2, SW Avail = 'Jun-2019,,

Processor = 'AMD EPYC 7H12' License = 9016,

Processor MHz = 2600 Tested By = '‘ASUSTeK Computer Inc.,

CPU(s) Orderable =1 chip), Test Sponsor = ‘ASUSTeK Computer Inc.,

Parallel = 'Yes', Test Date = 'Jun-2020,

Base Pointer Size = '64-bit', Published ="Jul-2020',

Peak Pointer Size = '32/64-bit, Updated ="Jul-2020',

Disclosures = 'HTML CSV PDFE PS Text Config'

1st Level Cache ='32 KB | + 32 KB D on chip per core’,

Outline

* Problem and approach
* The data

* Data preparation

* Deep Learning models
* Results

* Conclusions

Cleaning the data

* Data needs to be very ‘clean’

 1024MB’, ‘1GB’ — convert to same units

e ‘1 CPU’, “1 cpu’ — convert to same case

* Base result = ‘0’ — removal of outliers

e “1GB’, 1 GB’, ‘1 GB’ — removal of spurious spaces
* "1GB’, ‘2GB’, ‘4GB’ — make categorical

* Our reproducibility package contributes code to clean the SPEC CPU
2017 data to support further analyses.

Removal of highly correlated features

* Highly correlated features don’t help with producing better results
* And sometimes make things worse

* Kendall’s rank correlation used to identify those features > 70%
corelated with others

e 7 features removed

Pearson and Spearman gave very similar results

Outline

* Problem and approach
* The data

* Data preparation

* Deep Learning models
* Results

* Conclusions

Challenges

* Choosing the best Neural Network isn’t trivial

* Shape of the network
* Layers and width

e Types of ‘neurons’
 Activation functions
* Loss function

* Optimizers

e Stride size

Challenges

* Choosing the best Neural Network isn’t trivial

* Shape of the network
* Layers and width

e Types of ‘neurons’

e Activation functions |

* Loss function

* Optimizers

e Stride size

Neural architecture search space

- Hyperparameter search space

* Epochs

Searching for Neural Network (MLP)

* Fully-Connected Networks: trapezium shaped

e Number of neurons: From 2" to 2™
e Range=n€[4,..,11], me[1, ..., 10]

INFUT

2" Meurons

"Neurans

En

22 Meayrons

2M Meurons

A,Q_, OUTPUT

Searching for Neural Network cont. (CNN)

* CNN design: trapezium shaped

* Number of convolutional layers: From 2" to 2™™
e Range=n€|[7,..,11], me [4, ..., 7]
 Kernel € [1, 3]

* Number of neurons: From 2P to 2P
e Range=p€|7, ..., 11],q€[5, ..., 7]

FLATTEN
>
v
2
¢
20

AL

RIRRRRERRRIRARERRRRERENA

——)

Convolutional Layers Dense Layers

Searching for Neural Network cont.
(ResNet Inspired)

e |dentity block * Final architecture

e Convolutional block -
g e ﬁr {EJE
oy o ™
X F(X) 4’@\‘ 2™ | | 3% |
—_— Conv1 Conv2 Conv3 Kemel = 3 5 o E N tim
oo o -
oy w m
Conv3

|

IINNRNRNERENRRRERRNNRINY

* Super block .

volutional
Block

—~n Identity Block

---- Identityb—}
rtimes

(2P, 2P, gr-‘*+2} (2P, 2P, 2D+2} (2P, 2P, 2p+2}

ml apt m1-2]

SUPER BLOCK
FLATTEN

m ED"'

(27

Hyperparameter search

* Optimizers: SGD, Adam, Rmsprop

* Loss functions: MAE and MSE
 Activation functions: sigmoid, tanh, RelLU

 Stride size € [1, ..., 4]

Outline

* Problem and approach
* The data

* Data preparation

* Deep Learning models
* Results

* Conclusions

Metrics

* R2: strength of the relationship between predictions and actual
* Closerto 1 is better

* MAE: how big error is between predicted and actual
* Closer to O is better

 MSE: Similar to MAE but more impact from large differences
* Closerto O is better

" (yi—yl)°

R®=1-
;'1:1 (yi — g)z

N N
. 1 / _ 1 / 2
MAE = N iil ly; — y| MSE = N i;(yl- ~ i)

y; is the true value, y; is the predicted value and ¥; is the mean of all true values

Baseline comparison methods

* Linear Regression

* Support Vector Regression

 Random Forest Regression >

Overall Comparison — sorter by R?

Architecture LossFn Kernel Sizes Stride Sizes Number of Filters (m, n) Neurons in Layers (p, q) Optimizer Epochs R2 MAE MSE
1 TriCNN MAE 3 1 (9, 7) [9,...,5] Adam 250 0.98638701 5.67389728 465.3285655
2 TriCNN MAE 3 2 (9,7,6,5,4) [9,..., 4] Adam 250 0.98590661 583946465 476.0394343
3 TriCNN MAE 3 2 (9, 7) [9, ..., 5] Adam 300 0.98579341 576197731 494.124225
4 riCNMN MAE 3 1 (9,7) [9, ..., 5] Adam 150 0.98529142 625318407 513.9629513
5 riCNMN MAE 3 2 (9,7, 6,5,4) [9, ..., 4] RmsProp 150 0.98282719 7.14056732 620.2982421
G riCNMN MAE 3 2 (9,7, 6,5,4) [9, ..., 4] Adam 200 0.98280914 603564805 582.3068145
7 TriCNN MAE 3 2 (9,7, 6,5,4) (9, ..., 4] Adam 300 0.98278342 5.61076184 582.0247239
8 TriCNN MAE 3 1 (9, 7) [9, ..., 5] Adam 300 0.98107176 578137347 6454129833
o riCNMN MAE 3 2 (9, 7) [9, ..., 5] RmsProp 250 0.98095925 672097815 669.8856237
10 riCNN MAE 3 1 (9,7) [9, ..., 5] Adam 200 0.98089907 632291809 665.1641919
11 riCNN MAE 3 2 (9,7) [9, ..., 5] Adam 150 0.98047251 671537772 663.7030719
12 TriCNN MAE 3 1 (7,6,5,4) [9,.... 5] RmsProp 300 0.98038864 6.9974749 653.5821736
~ RF 0.9803076 4.76701531 685.0001262
13 TriCNN MAE 3 1 (7,6,5,4) [9,...,5] RmsProp 200 0.98002879 7.62788323 684.7595471
14 TriCNN MAE 2 1 (9, 7) [11,..., 6] Adam 150 0.9793459 6.319971 T03.0015545
15 riCNMN MAE 3 2 (9, 7) [9, ..., 5] Adam 100 0.97782539 8.23651529 754.5381605
16 riCNMN MAE 3 2 (9,7, 6,5,4) [9, ..., 4] Adam 100 0.97748578 730871799 757.4994333
17 riCNMN MAE 3 2 (9,7, 6,5,4) [9, ..., 4] Adam 150 0.97726148 6.65855022 T772.0747562
18 TriCNN MAE 3 1 (7,6, 5,4) (9. ..., 5] RmsProp 250 0.97665471 7.86703389 775.8960336
19 TriCNN MAE 3 2 (9,7, 6,5,4) (9, ..., 4] RmsProp 250 0.97650919 7.97325412 852.3545636
20 TriCNN MAE 3 2 (9, 7) [9,...,5] RmsProp 300 0.97636563 6.91501173 816.7881606
45 ‘riMLP MAE [11, ..., 6] Adam 250 0.97347275 9.12443258 906.1439402
159 Residual MAE Number of Superblocks = (2, 5,5,2) (6, 6, 8), (7, 7. 9), (8, 8, 10), (9, 9, 11)) 1 RmsProp 250 0.95007233 10.595069 1006.134564
~ LR 0.52639158 82.4596122 15761.16107
~ SVER -0.0045634 113.749207 33448.30886

* TriCNN = Trapezium-shaped CNN, RF = Random Forest Regression, TriMLP = Trapezium-ghaped MPL, LR = Linear Regression, SVR = Support Vector Regression

Overall Comparison — sorted by MAE

Architecture LossFn Kernel Sizes Stride Sizes Number of Filters (m, n) Neurons in Layers (p, q) Optimizer Epochs R2 MAE MSE
1 TriCNN MAE 3 1 (9,7) [9,...,5] Adam 250 0.98638701 5.67389728 465.3285655
2 TriCNN MAE 3 2 (9,7,6,5,4) [9,..., 4] Adam 250 0.98590661 5.83946465 476.0394343
3 TriCNN MAE 3 2 9,7 [9,...,5] Adam 300 0.98579341 5.76197731 494.124225
4 TriCNN MAE 3 1 (9,7) [9,...,5] Adam 150 0.98529142 6.25318407 513.9629513
5 TriCNN MAE 3 2 (9,7,6,5,4) [9,..., 4] Adam 300 098278342 5.61076184 582.0247239
6 TriCNN MAE 3 2 (9,7,6,5,4) [9,..., 4] Adam 200 0.98280914 6.03564805 582.3068145
7 TriCNN MAE 3 2 (9,7,6,5,4) [9, ..., 4] RmsProp 150 0.98282719 7.14056732 620.2982421
8 TriCNN MAE 3 1 9, 7) [9,...,5] Adam 300 0.98107176 5.78137347 645.4129883
9 TriCNN MAE 3 1 (7,6,5,4) [9,...,5] RmsProp 300 0.98038864 6.9974749 653.5821786
10 TriCNN MAE 3 2 (9,7) [9,...,5] Adam 150 0.98047251 6.71537772 663.7030719
11 TriCNN MAE 3 1 9, 7) [9,...,5] Adam 200 0.98089907 6.32291809 665.1641919
12 TriCNN MAE 3 2 (9,7 [9,...,5] RmsProp 250 0.98095925 6.72097815 669.8856237
13 TriCNN MAE 3 1 (7,6,5,4) [9,...,5] RmsProp 200 0.98002879 7.62788323 684.7595471
~ RF 0.9803076 4.76701531 688.0001262
14 TriCNN MAE 2 1 (9,7) [11,...,6] Adam 150 0.9793459 6.519971 703.0615545
15 TriCNN MAE 3 2 9,7) [9,...,5] Adam 100 0.97782539 8.23651529 754.5381605
16 TriCNN MAE 3 2 (9,7,6,5,4) [9,..., 4] Adam 100 0.97748578 7.30871799 757.4994833
17 TriCNN MAE 3 2 (9,7,6,5,4) [9,...,4] Adam 150 097726148 6.65855022 772.0747562
18 TriCNN MAE 3 1 (7,6,5,4) [9,...,5] RmsProp 250 097665471 7.86703389 775.8960386
19 TriCNN MAE 3 2 (9,7) [9,...,5] RmsProp 200 0.97613855 7.72461632 807.1294185
20 TriCNN MAE 3 2 (9,7) [9,..., 5] RmsProp 300 0.97636563 6.91501173 816.7881606
48 TriMLP MAE [11,...,6] Adam 250 0.97347275 9.12443258 906.1439402
135 Residual ~ MAE Number of Superblocks = (2, 5,5,2) (6, 6, 8), (7. 7, 9), (8, 8, 10), (9, 9, 11)) 1 RmsProp 250 0.95007233 10.595069 1006.134564
LR 0.52639158 82.4596122 15761.16107
SVR -0.0045634 113.749207 33448.30886

* TriCNN = Trapezium-shaped CNN, RF = Random Forest Regression, TriMLP = Trapezium-shaped MPL, LR = Linear Regression, SVR = Support Vector Regression

Comparison of approaches

[™

Trapezium CNN 0.9864
Random Forest Regression 0.9830
Fully Connected MLP 0.9735
Residual Neural Network 0.9501
Linear Regression 0.5260

Support Vector Regression -0.0040

How do we do across the range?

Model - CNN - Linear Regression -~ RF - SVR

CNN Linear Regression RF SVR

6000 -
wn L]
Q
= 4000+
S
O 2000 - .. . ®
?
a 0 —..—-L. -
o L]
8 2000 : -
O L]

4 -2 0 2 4-4 -2 0 2 4-4 -2 0 2 4-4 -2 0

Theoretical quantiles

Hyperparameters

* Optimizer: Adam though RMSprop close

e Loss function: MAE, even when metric was MSE

* Activation function: Sigmoid

 Stride: 1 or 2

e Kernel size: normally 3

* Training epochs: Normally 250, though some exceptions

- Though model dependent

Residuals of different models

SVR-

Model

CNN -

Model =7 CNN EJ Linear Regression -7 RF 1 SVR

RF-

Linear Regression -

—

~2000

0

2000
Residuals

4000

6000

Threats to Validity

* Limitations:
e L1: Single benchmark dataset
e L2:Single expert for data cleaning

* Construct Validity
* Could also look at predicting energy use

* Internal Validity
* One researcher cleaned data, though well documented

* External Validity
* Only done for SPEC 2017

e Reproducibility
 Code and data is available

Implications

e Can provide more accurate predictions when we can’t do traditional
benchmarking methods

* Helps organizations make better decisions when it comes to selecting
hardware

Future Research Directions

* More powerful neural network architectures with innovative feature
aggregating modules or higher parameter and layer counts could lead
to even better performance predictions

* Transfer learning could be used to pre-train the performance
prediction system on a larger proxy dataset before fine-tuning it on a
benchmark dataset

Conclusions

* Deep learning models have the potential to revolutionize the way we understand
computing system performance and make better decisions when it comes to selecting
and optimizing hardware based on real-world workloads

* CNN Models produce the best results — though at cost of training time
* RFis close second — but less useful when predicting for novel hardware

* MLP and ResNet-inspired models perform reasonably well, but not as good as others
* Not worth the extra cost

* Future research could explore more powerful neural network architectures and the
effects of transfer learning to further improve performance predictions

* All code and data, available: https://github.com/cengizmehmet/BenchmarkNets

Long term: M.Cengiz2@newcastle.ac.uk
At Conference: Stephen.mcgough@Newcastle.ac.uk

https://github.com/cengizmehmet/BenchmarkNets
mailto:M.Cengiz2@newcastle.ac.uk
mailto:Stephen.mcgough@Newcastle.ac.uk

	Slide 1: Predicting the Performance of a Computing System with Deep Networks
	Slide 2: Outline
	Slide 3
	Slide 4: Predicting SPEC CPU 2017 scores for new computers
	Slide 5
	Slide 6: Filling in the gaps with Machine Learning
	Slide 7: Outline
	Slide 8: Features in SPEC CPU 2017 dataset
	Slide 9: Features in SPEC CPU 2017 dataset
	Slide 10: Features in SPEC CPU 2017 dataset
	Slide 11: Features in SPEC CPU 2017 dataset
	Slide 12: SPEC CPU 2017 Data example
	Slide 13: Outline
	Slide 14: Cleaning the data
	Slide 15: Removal of highly correlated features
	Slide 16: Outline
	Slide 17: Challenges
	Slide 18: Challenges
	Slide 19: Searching for Neural Network (MLP)
	Slide 20: Searching for Neural Network cont. (CNN)
	Slide 21: Searching for Neural Network cont. (ResNet Inspired)
	Slide 22: Hyperparameter search
	Slide 23: Outline
	Slide 24: Metrics
	Slide 25: Baseline comparison methods
	Slide 26: Overall Comparison – sorter by R2
	Slide 27: Overall Comparison – sorted by MAE
	Slide 28: Comparison of approaches
	Slide 29: How do we do across the range?
	Slide 30: Hyperparameters
	Slide 31: Residuals of different models
	Slide 32: Threats to Validity
	Slide 33: Implications
	Slide 34: Future Research Directions
	Slide 35: Conclusions

