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Filling in the gaps with Machine Learning

• Benchmarking systems is costly
• Time to conduct tests

• Financial (hardware + software)

• Machine Learning is promising alternative to building and testing
• Especially Deep Learning

• We demonstrate the potential of deep learning for predicting performance
• using Multi-layer Perceptrons and Convolutional Neural Networks

SPEC 2017 score
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What we’ll
predict



SPEC CPU 2017 Data example
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Cleaning the data

• Data needs to be very ‘clean’

• ‘1024MB’, ‘1GB’ – convert to same units

• ‘1 CPU’, ‘1 cpu’ – convert to same case

• Base result = ‘0’ – removal of outliers

• ‘1GB’, ‘ 1 GB’, ‘1 GB’ – removal of spurious spaces

• ’1GB’, ‘2GB’, ‘4GB’ – make categorical

• Our reproducibility package contributes code to clean the SPEC CPU 
2017 data to support further analyses.



Removal of highly correlated features

• Highly correlated features don’t help with producing better results

• And sometimes make things worse

• Kendall’s rank correlation used to identify those features > 70% 
corelated with others

• 7 features removed

Pearson and Spearman  gave very similar results
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Challenges

• Choosing the best Neural Network isn’t trivial

• Shape of the network
• Layers and width

• Types of ‘neurons’

• Activation functions

• Loss function

• Optimizers

• Stride size



Challenges

• Choosing the best Neural Network isn’t trivial

• Shape of the network
• Layers and width

• Types of ‘neurons’

• Activation functions

• Loss function

• Optimizers

• Stride size

• Epochs

Neural architecture search space

Hyperparameter search space



Searching for Neural Network (MLP)

• Fully-Connected Networks: trapezium shaped
• Number of neurons: From 2n to 2n-m

• Range = n∈ [4, …, 11], m∈ [1, …, 10]



Searching for Neural Network cont. (CNN)

• CNN design: trapezium shaped
• Number of convolutional layers: From 2n to 2n-m

• Range = n∈ [7, …, 11], m∈ [4, …, 7]

• Kernel ∈ [1, 3]

• Number of neurons: From 2p to 2p-q

• Range = p∈ [7, ..., 11], q∈ [5, ..., 7]



Searching for Neural Network cont.
(ResNet Inspired)
• Identity block

• Convolutional block

• Super block

• Final architecture



Hyperparameter search

• Optimizers: SGD, Adam, Rmsprop

• Loss functions: MAE and MSE

• Activation functions: sigmoid, tanh, ReLU

• Stride size ∈ [1, …, 4]
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Metrics

• R2: strength of the relationship between predictions and actual
• Closer to 1 is better

• MAE: how big error is between predicted and actual
• Closer to 0 is better

• MSE: Similar to MAE but more impact from large differences
• Closer to 0 is better

𝑦𝑖 is the true value, 𝑦𝑖
′ is the predicted value and ത𝑦𝑖 is the mean of all true values 



Baseline comparison methods

• Linear Regression

• Support Vector Regression

• Random Forest Regression

𝜀



Overall Comparison – sorter by R2



Overall Comparison – sorted by MAE



Comparison of approaches

Model Best R2

Trapezium CNN 0.9864

Random Forest Regression 0.9830

Fully Connected MLP 0.9735

Residual Neural Network 0.9501

Linear Regression 0.5260

Support Vector Regression -0.0040



How do we do across the range?



Hyperparameters

• Optimizer: Adam though RMSprop close

• Loss function: MAE, even when metric was MSE

• Activation function: Sigmoid

• Stride: 1 or 2

• Kernel size: normally 3

• Training epochs: Normally 250, though some exceptions 

- Though model dependent



Residuals of different models



Threats to Validity

• Limitations:
• L1: Single benchmark dataset
• L2: Single expert for data cleaning

• Construct Validity
• Could also look at predicting energy use

• Internal Validity
• One researcher cleaned data, though well documented

• External Validity
• Only done for SPEC 2017

• Reproducibility
• Code and data is available



Implications

• Can provide more accurate predictions when we can’t do traditional
benchmarking methods

• Helps organizations make better decisions when it comes to selecting
hardware



Future Research Directions

• More powerful neural network architectures with innovative feature 
aggregating modules or higher parameter and layer counts could lead 
to even better performance predictions

• Transfer learning could be used to pre-train the performance 
prediction system on a larger proxy dataset before fine-tuning it on a 
benchmark dataset



Conclusions

• Deep learning models have the potential to revolutionize the way we understand 
computing system performance and make better decisions when it comes to selecting 
and optimizing hardware based on real-world workloads

• CNN Models produce the best results – though at cost of training time

• RF is close second – but less useful when predicting for novel hardware

• MLP and ResNet-inspired models perform reasonably well, but not as good as others
• Not worth the extra cost

• Future research could explore more powerful neural network architectures and the 
effects of transfer learning to further improve performance predictions

• All code and data, available: https://github.com/cengizmehmet/BenchmarkNets

Long term: M.Cengiz2@newcastle.ac.uk
At Conference: Stephen.mcgough@Newcastle.ac.uk
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