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Filling in the gaps with Machine Learning

 Benchmarking systems is costly
e Time to conduct tests
* Financial (hardware + software)

* Machine Learning is promising alternative to building and testing
* Especially Deep Learning

 We demonstrate the potential of deep learning for predicting performance
e using Multi-layer Perceptrons and Convolutional Neural Networks
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Features in SPEC CPU 2017 dataset

Data Type  Column

String Benchmark, Hardware Vendor, System, 34 attributes / features
Processor, CPU(s) Orderable, 1st Level Cache,
2nd Level Cache, 3rd Level Cache, Other Cache,
Storage, Operating System, File System,
Compiler, License, Tested By, Test Sponsor

Numerical = Peak Result, Base Result, Energy Peak Result,
Energy Base Result, # Cores, # Chips, Memory,
# Enabled Threads Per Core, Processor MHz

Binary Parallel

Ternary Base Pointer Size
Quaternary Peak Pointer Size
Date HW Avail, SW Avail, Test Date, Published,

(mon-yyyy) Updated

Text Disclosures
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SPEC CPU 2017 Data example

Benchmark = "CINT2017', 2nd Level Cache ="512 KB I+D on chip per core',

Hardware Vendor = 'ASUSTeK Computer Inc., 3rd Level Cache ="256 MB |+D on chip per chip, 16 MB shared / 4 cores’,

System = 'ASUS ESC4000A-E10(KRPG-U8) Server System 2.60 GHz, AMD EPYC 7H12', Other Cache ='None,

Peak Result = 9.09, Memory ="512 GB (8 x 64 GB 2Rx4 PC4-3200AA-R)',

Base Result = 8.87, Storage = "1 x 480 GB SATA SSD/,

Energy Peak Result = 0.0, Operating System = 'Ubuntu 19.04 (x86_64), Kernel 5.0.0-20-generic’,

Energy Base Result = 0.0, File System =ext4,

# Cores = 64, Compiler = 'C/C++/Fortran: Version 2.0.0 of AOCC,

# Chips = 1, HW Avail = 'Jul-2020',

# Enabled Threads Per Core = 2, SW Avail = 'Jun-2019,,

Processor = 'AMD EPYC 7H12' License = 9016,

Processor MHz = 2600 Tested By = '‘ASUSTeK Computer Inc.,

CPU(s) Orderable =1 chip), Test Sponsor = ‘ASUSTeK Computer Inc.,

Parallel = 'Yes', Test Date = 'Jun-2020,

Base Pointer Size = '64-bit', Published ="Jul-2020',

Peak Pointer Size = '32/64-bit, Updated ="Jul-2020',

Disclosures = 'HTML CSV PDFE PS Text Config'

1st Level Cache ='32 KB | + 32 KB D on chip per core’,
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Cleaning the data

* Data needs to be very ‘clean’

 1024MB’, ‘1GB’ — convert to same units

e ‘1 CPU’, “1 cpu’ — convert to same case

* Base result = ‘0’ — removal of outliers

e “1GB’, 1 GB’, ‘1 GB’ — removal of spurious spaces
* "1GB’, ‘2GB’, ‘4GB’ — make categorical

* Our reproducibility package contributes code to clean the SPEC CPU
2017 data to support further analyses.



Removal of highly correlated features

* Highly correlated features don’t help with producing better results
* And sometimes make things worse

* Kendall’s rank correlation used to identify those features > 70%
corelated with others

e 7 features removed

Pearson and Spearman gave very similar results
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Challenges

* Choosing the best Neural Network isn’t trivial

* Shape of the network
* Layers and width

e Types of ‘neurons’
 Activation functions
* Loss function

* Optimizers

e Stride size



Challenges

* Choosing the best Neural Network isn’t trivial

* Shape of the network
* Layers and width

e Types of ‘neurons’

e Activation functions |

* Loss function

* Optimizers

e Stride size

Neural architecture search space

- Hyperparameter search space

* Epochs



Searching for Neural Network (MLP)

* Fully-Connected Networks: trapezium shaped

e Number of neurons: From 2" to 2™
e Range=n€[4,..,11], me[1, ..., 10]
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Searching for Neural Network cont. (CNN)

* CNN design: trapezium shaped

* Number of convolutional layers: From 2" to 2™™
e Range=n€|[7,..,11], me [4, ..., 7]
 Kernel € [1, 3]

* Number of neurons: From 2P to 2P
e Range=p€|7, ..., 11],q€[5, ..., 7]
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Searching for Neural Network cont.
(ResNet Inspired)

e |dentity block * Final architecture

e Convolutional block -
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Hyperparameter search

* Optimizers: SGD, Adam, Rmsprop

* Loss functions: MAE and MSE
 Activation functions: sigmoid, tanh, RelLU

 Stride size € [1, ..., 4]
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Metrics

* R2: strength of the relationship between predictions and actual
* Closerto 1 is better

* MAE: how big error is between predicted and actual
* Closer to O is better

 MSE: Similar to MAE but more impact from large differences
* Closerto O is better
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y; is the true value, y; is the predicted value and ¥; is the mean of all true values



Baseline comparison methods

* Linear Regression

* Support Vector Regression

 Random Forest Regression >




Overall Comparison — sorter by R?

#  Architecture LossFn  Kernel Sizes Stride Sizes Number of Filters (m, n) Neurons in Layers (p, q) Optimizer Epochs R2 MAE MSE
1 TriCNN MAE 3 1 (9, 7) [9,...,5] Adam 250 0.98638701 5.67389728 465.3285655
2 TriCNN MAE 3 2 (9,7,6,5,4) [9,..., 4] Adam 250 0.98590661 583946465 476.0394343
3 TriCNN MAE 3 2 (9, 7) [9, ..., 5] Adam 300 0.98579341 576197731  494.124225
4 riCNMN MAE 3 1 (9,7) [9, ..., 5] Adam 150 0.98529142 625318407 513.9629513
5 riCNMN MAE 3 2 (9,7, 6,5,4) [9, ..., 4] RmsProp 150 0.98282719 7.14056732 620.2982421
G riCNMN MAE 3 2 (9,7, 6,5,4) [9, ..., 4] Adam 200 0.98280914 603564805 582.3068145
7 TriCNN MAE 3 2 (9,7, 6,5,4) (9, ..., 4] Adam 300 0.98278342 5.61076184 582.0247239
8 TriCNN MAE 3 1 (9, 7) [9, ..., 5] Adam 300 0.98107176 578137347 6454129833
o riCNMN MAE 3 2 (9, 7) [9, ..., 5] RmsProp 250 0.98095925 672097815 669.8856237
10 riCNN MAE 3 1 (9,7) [9, ..., 5] Adam 200 0.98089907 632291809 665.1641919
11 riCNN MAE 3 2 (9,7) [9, ..., 5] Adam 150 0.98047251 671537772  663.7030719
12 TriCNN MAE 3 1 (7,6,5,4) [9,.... 5] RmsProp 300 0.98038864  6.9974749  653.5821736
~ RF 0.9803076  4.76701531 685.0001262
13 TriCNN MAE 3 1 (7,6,5,4) [9,...,5] RmsProp 200 0.98002879 7.62788323 684.7595471
14 TriCNN MAE 2 1 (9, 7) [11,..., 6] Adam 150 0.9793459 6.319971 T03.0015545
15 riCNMN MAE 3 2 (9, 7) [9, ..., 5] Adam 100 0.97782539 8.23651529 754.5381605
16 riCNMN MAE 3 2 (9,7, 6,5,4) [9, ..., 4] Adam 100 0.97748578 730871799 757.4994333
17 riCNMN MAE 3 2 (9,7, 6,5,4) [9, ..., 4] Adam 150 0.97726148 6.65855022 T772.0747562
18 TriCNN MAE 3 1 (7,6, 5,4) (9. ..., 5] RmsProp 250 0.97665471  7.86703389 775.8960336
19 TriCNN MAE 3 2 (9,7, 6,5,4) (9, ..., 4] RmsProp 250 0.97650919  7.97325412 852.3545636
20 TriCNN MAE 3 2 (9, 7) [9,...,5] RmsProp 300 0.97636563 6.91501173  816.7881606
45 ‘riMLP MAE [11, ..., 6] Adam 250 0.97347275 9.12443258 906.1439402
159  Residual MAE  Number of Superblocks = (2, 5,5,2) (6, 6, 8), (7, 7. 9), (8, 8, 10), (9, 9, 11)) 1 RmsProp 250  0.95007233 10.595069  1006.134564
~ LR 0.52639158 82.4596122 15761.16107
~ SVER -0.0045634  113.749207  33448.30886

* TriCNN = Trapezium-shaped CNN, RF = Random Forest Regression, TriMLP = Trapezium-ghaped MPL, LR = Linear Regression, SVR = Support Vector Regression



Overall Comparison — sorted by MAE

#  Architecture LossFn Kernel Sizes Stride Sizes Number of Filters (m, n) Neurons in Layers (p, q) Optimizer Epochs R2 MAE MSE
1 TriCNN MAE 3 1 (9,7) [9,...,5] Adam 250 0.98638701 5.67389728 465.3285655
2 TriCNN MAE 3 2 (9,7,6,5,4) [9,..., 4] Adam 250 0.98590661 5.83946465 476.0394343
3 TriCNN MAE 3 2 9,7 [9,...,5] Adam 300 0.98579341 5.76197731  494.124225
4 TriCNN MAE 3 1 (9,7) [9,...,5] Adam 150 0.98529142 6.25318407 513.9629513
5 TriCNN MAE 3 2 (9,7,6,5,4) [9,..., 4] Adam 300 098278342 5.61076184 582.0247239
6 TriCNN MAE 3 2 (9,7,6,5,4) [9,..., 4] Adam 200 0.98280914 6.03564805 582.3068145
7 TriCNN MAE 3 2 (9,7,6,5,4) [9, ..., 4] RmsProp 150 0.98282719 7.14056732 620.2982421
8 TriCNN MAE 3 1 9, 7) [9,...,5] Adam 300 0.98107176 5.78137347 645.4129883
9 TriCNN MAE 3 1 (7,6,5,4) [9,...,5] RmsProp 300 0.98038864 6.9974749 653.5821786
10 TriCNN MAE 3 2 (9,7) [9,...,5] Adam 150 0.98047251 6.71537772 663.7030719
11 TriCNN MAE 3 1 9, 7) [9,...,5] Adam 200 0.98089907 6.32291809 665.1641919
12 TriCNN MAE 3 2 (9,7 [9,...,5] RmsProp 250 0.98095925 6.72097815 669.8856237
13 TriCNN MAE 3 1 (7,6,5,4) [9,...,5] RmsProp 200 0.98002879 7.62788323 684.7595471
~ RF 0.9803076 4.76701531 688.0001262
14 TriCNN MAE 2 1 (9,7) [11,...,6] Adam 150 0.9793459 6.519971  703.0615545
15 TriCNN MAE 3 2 9,7) [9,...,5] Adam 100 0.97782539 8.23651529 754.5381605
16 TriCNN MAE 3 2 (9,7,6,5,4) [9,..., 4] Adam 100 0.97748578 7.30871799 757.4994833
17 TriCNN MAE 3 2 (9,7,6,5,4) [9,...,4] Adam 150 097726148 6.65855022 772.0747562
18 TriCNN MAE 3 1 (7,6,5,4) [9,...,5] RmsProp 250 097665471 7.86703389 775.8960386
19 TriCNN MAE 3 2 (9,7) [9,...,5] RmsProp 200 0.97613855 7.72461632 807.1294185
20 TriCNN MAE 3 2 (9,7) [9,..., 5] RmsProp 300 0.97636563 6.91501173 816.7881606
48 TriMLP MAE [11,...,6] Adam 250 0.97347275 9.12443258 906.1439402
135  Residual ~ MAE  Number of Superblocks = (2, 5,5,2) (6, 6, 8), (7. 7, 9), (8, 8, 10), (9, 9, 11)) 1 RmsProp 250  0.95007233 10.595069  1006.134564
LR 0.52639158 82.4596122 15761.16107
SVR -0.0045634 113.749207 33448.30886

* TriCNN = Trapezium-shaped CNN, RF = Random Forest Regression, TriMLP = Trapezium-shaped MPL, LR = Linear Regression, SVR = Support Vector Regression



Comparison of approaches

[ ™

Trapezium CNN 0.9864
Random Forest Regression 0.9830
Fully Connected MLP 0.9735
Residual Neural Network 0.9501
Linear Regression 0.5260

Support Vector Regression -0.0040



How do we do across the range?

Model - CNN - Linear Regression -~ RF - SVR

CNN Linear Regression RF SVR
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Hyperparameters

* Optimizer: Adam though RMSprop close

e Loss function: MAE, even when metric was MSE

* Activation function: Sigmoid

 Stride: 1 or 2

e Kernel size: normally 3

* Training epochs: Normally 250, though some exceptions

- Though model dependent



Residuals of different models
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Threats to Validity

* Limitations:
e L1: Single benchmark dataset
e L2:Single expert for data cleaning

* Construct Validity
* Could also look at predicting energy use

* Internal Validity
* One researcher cleaned data, though well documented

* External Validity
* Only done for SPEC 2017

e Reproducibility
 Code and data is available



Implications

e Can provide more accurate predictions when we can’t do traditional
benchmarking methods

* Helps organizations make better decisions when it comes to selecting
hardware



Future Research Directions

* More powerful neural network architectures with innovative feature
aggregating modules or higher parameter and layer counts could lead
to even better performance predictions

* Transfer learning could be used to pre-train the performance
prediction system on a larger proxy dataset before fine-tuning it on a
benchmark dataset



Conclusions

* Deep learning models have the potential to revolutionize the way we understand
computing system performance and make better decisions when it comes to selecting
and optimizing hardware based on real-world workloads

* CNN Models produce the best results — though at cost of training time
* RFis close second — but less useful when predicting for novel hardware

* MLP and ResNet-inspired models perform reasonably well, but not as good as others
* Not worth the extra cost

* Future research could explore more powerful neural network architectures and the
effects of transfer learning to further improve performance predictions

* All code and data, available: https://github.com/cengizmehmet/BenchmarkNets

Long term: M.Cengiz2@newcastle.ac.uk
At Conference: Stephen.mcgough@Newcastle.ac.uk
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