NC STATE UNIVERSITY

DrGPU: A Top-Down Profiler for GPU

Yueming Hao', Nikhil Jain?, Rob Van Der Wijngaart?,

Nirmal Saxena?, Yuanbo Fan3, Xu Liu’

'North Carolina State University
2NVIDIA Corporation
3Tenstorrent Incorporated

NC STATE UNIVERSITY

GPUs are Broadly Used for Acceleration

DEEP .
i)(eeeee 4\ mlcrosoﬁ
RRRRRRR -
g Cogpnitive
Toolkit

MATLAB

CRYOSPARC GROMACS
Cryo

(Dxnet < PaddiePaddle O PyTorch

P e
| °® t Wolfram
‘ orch]
TensorFlow Languagé

NVIDIA.

AMD 1

MICROEVOLUTION CLARA
Microscopy Parabricks

https://blogs.nvidia.com/blog/2021/06/25/industrial-hpc-revolution/
https://hexus.net/business/news/legal/102244-intels-nvidia-gpu-licensing-deal-ends-next-month/

NC STATE UNIVERSITY

GPU Programming

// Kernel definition
__global void VecAdd(float* A, float* B, float* C)
{
int i = threadIdx.x; — GPU Kernel
C[i] = A[i] + B[i];
}

int main()

{

of GPU threads
// Kernel invocation with N threads
N = 1624 > 1 warp = 32 threads

VecAdd<<<1l, N>>>(A, B, C);

NC STATE UNIVERSITY

Existing GPU Performance Tools

iewer: FLASH/white dwarf: IBM BG/P, weak 256->8192
Page: | Details ~ | Result: |0- 617-MatrixMulCUDA ~ | 7 |~/ | Add Baseline |~| | Apply Rules Occupancy Calculator Copy as Image |~ "S_mpi_amr_comm_setup.F90 23 =0
Beeuit LD CGyclesBRRegERGEY S Eal=y CoBiccess) ® 00 e 418 itemp = max(sum(commatrix_send), sum(commatrix_recv))
[Current 617 - MatrixMuICUDA (20, 10,.. 80.54usecond 134959 37 0-NVIDIARTX A5000 1.67 cycle/nsecond 8.6 [2429795] matrixMul 119 Call MPI_ALLREDUCE (itemp, &
5 420 max_blks_sent, &
i\ Warning: Data collection happened without GPU frequencies fixed by the profiler. Some results may be inconsistent. 1 15 &
» GPU Speed Of Light Throughput @ MPI_INTEGER, &
MPI_MAX, &
High-level overview of the throughput for compute and memory resources of the GPU. For each unit, the throughput reports the achieved percentage of utilization with MPI_COMM_WORLD 2
respect to the theoretical maximum. Breakdowns show the throughput for each individual sub-metric of Compute and Memory to clearly identify the highest i E 2
contributor. High-level overview of the utilization for compute and memory resources of the GPU presented as a roofline chart. ierror)
Compute (SM) Throughput [%] 65.89 Duration [usecond] 80.54 &2
Memory Throughput [%] 65.80 Elapsed Cycles [cycle] 134,959
L1/TEX Cache Throughput [%] 8257 SM Active Cycles [cycle] 107,298.55 "X Calling Context View | R, Callers View 53 | fg, Flat View =
L2 Cache Throughput [%] 8.69 SM Frequency [cycle/nsecond] 1.67
DRAM Throughput [%] 210 DRAM Frequency [cycle/nsecond] 7.56 %+ 3 ‘ 6 f ‘ W5 A A
© Belariced Throughput Compute and Memory are well-balanced: To reduce runtime, both computation and memory traffic must be reduced. Check both Scope 8192 /WALLCLOCK (us) () 8192 /WALLCLOCK (us) (E) ~
9P the > Compute Workload Analysis and b Memory Workload Analysis sections. Experiment Aggregate Metrics 6.71e+08 6.71e+08 100 %
o _ ¥ DCMF::Protocol::MultiSend:: TreeAllreduceShortRecvPostM 1.07e+08 1.07e+08 16.0%
) . The ratio of peak float (fp32) to double (fp64) performance on this device is 64:1. The kernel achieved 6% of this device's fp32 peak vé 2 o s
G EElmLATED o o e o e e e, St e el e e Sl b e, ¢ 436: DCMF::Queueing::Tree::Device::postRecv(DCMF 1.07e+08 1.07e+08 16.0%
517: DCMF_GClobalAllreduce 1.07e+08 1.07e+08 16.0%
» Compute Workload Analysis (o] v &1 37: MPIDO_Allreduce_global_tree 1.05e+08 1.05e+08 15.7%
Detailed analysis of the compute resources of the streaming multiprocessors (SM), including the achieved instructions per clock (IPC) and the utilization of each v ¢ 196: MPIDO_Allreduce 1.05e+08 1.05e+08 15.7%
available pipeline. Pipelines with very high utilization might limit the overall performance. 6578: PMPI_Allreduce 1.05e408 1.05e+08 15.7%
Executed Ipc Elapsed [inst/cycle] 0.65 | SM Busy [%] 28.89 Vv ¢ 126: pmpi_allreduce 1.05e+08 1.05e+08 15.7%
Executed Ipc Active [inst/cycle] 0.81 Issue Slots Busy [%] 2038 » < 419: mpi_amr_comm_setup 9.51e+07 9.51e+07 14.2%
Issued Ipc Active [inst/cyole] 0:2 » 4@ 177: amr_refine_derefine 5.04e+06 5.04e+06 0.8%
LSU i the highest-utlized pipeline (82.6%) It executes load/store memory operations. The pipeline is over uiized and likely @) > & 358: driver_computedt 2.08e+06 2.08e+06 0.3%
T a performance bottleneck. See the @ Kernel Profiling Guide or hover over the pipeline name to understand the workloads » & 119: mpi_morton_bnd 1.58e+06 1.58e+06 0.2%
A ry High Utilization : : L Sasks
handled by each pipeline. The Instruction Statistics section shows the mix of executed instructions in this kemel. Check » ¢ 150 driver_verifyinitdt 9.70e405 9.70e405 0.1%

the b Warp State Statistics section for which reasons cause warps to stall.

NVIDIA Nsight Compute HPCToolkit
Existing tools apply high-level hotspot analysis

NC STATE UNIVERSITY

DrGPU Contribution
DrGPU

> tells you where GPUs waste on stalling by a top-down tree

> provides analysis and optimization guidance for non-experts

NC STATE UNIVERSITY

What are Bottlenecks of GPU?

SM

I
Warp Scheduler (32 thread/clk) Warp Scheduler (32 thread/clk)

Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

P64 INT INT P32 FP32

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

FPes | INT INT |FP32 P32

W W W W W W W LD
o o sFu

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)
FP32 FP32
FP32 FP32

FP32 FP32

FP32FP32 TENSOR TENSOR
CORE

FP32 FP32
FP32 FP32
FP32 FP32

FP32 FP32

W L
st

Dispatch Unit (32 threadlclk)
+aister File (16,384 x 32-bit)

INT T P32

t TENSOR
CORE

INT T FPag PR32

DWW W gy

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 threadiclk)

Register File (16,384 x 32-bit)

FPag FPsz
FP32 FP32
FP32 FP32

FP32FP32 TENSOR TENSOR
PR CORE CORE

PPz P32
FP32 FP32
PPz P32

W L
sT st

1 instruction per cycle (IPC)
per warp scheduler per SM
=>

Ideal instruction per cycle is

NC STATE UNIVERSITY

What are Bottlenecks of GPU?

- IPC of GPU kernel react_state in PeleC

Dispatch Unit (32 thread/clk) Dispatch Unit (32 threadlclk)

Register File (16,384 x 32-bit) raister File (16,384 x 32-bit)

gap = achieved

Warp Scheduler (32 thread/clk) 4
Dispatch Unit (32 thread/clk)

INT INT P32 FP32 INT INT P32 FP32
W W W W W L W W L W W L
st

LO Instruction Cache LO Instruction Cache
‘Warp Scheduler (32 thread/clk) Warp Scheduler (32 thread/cik)
Dispatch Unit (32 threadclk) Dispatch Unit (32 threadlclk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

INT FP32 FP32 FP32 FP32
FP32 FP32 FP32 FP32
FP32 FP32 FP32 FP32

FP32 FP32 FP32 FP32

TENSOR TENSOR TENSOR TENSOR
Fraapss CORE CORE CORE CORE

FP32 FP32
FP32 FP32 FP32 FP32
FP32 FP32 FP32 FP32

FP32 FP32 FP32 FP32

W W L o Lo

st st sT st st T ST
128KB L1 Data Cache / Shared Memory. II C

Tex Tex

Gap is large between achieved IPC and ideal IPC!

NC STATE UNIVERSITY

Categories of Stall Reasons

No-issue cycles
Unit with highest util/SOL
Issue IPC

—_—

// —
o g s / >
Device Memory Stalls Synchronization Instruction Related Stalls Shared Memory Other Stalls
: St s) Related Stalls Delay due to dispatch stall
Delay due to device — Delay due to pending
memory accesses SUAER Y el global stores before exit Delay due to shared memory Delay due to constant
el e Eaes cache accesses
Delay in issuing devic — Delay due to instruction —— .
memory loads Threads waltlr!g for dependency Delay in issuing shared No Instructions
memory barriers memory accesses T e
Delay due to pipe elay ule to branc
contention 2o el
|

NC STATE UNIVERSITY

Instruction Related Stalls

Instruction Related Stalls

Delay due to pending

Delay due to instruction| Delay due to pipe
global stores before exit

dependency contention

\ v v
global __ kernelA(){ __global__ kernelB(){ global___ kernelC(){

arrayAfthread_id] += 10 ¢ = log10(a) for (Tt | : 0, i<1000,i++){
} f=c+e c=a*b
f=c*e
} }

NC STATE UNIVERSITY

DrGPU Overview

Online Data Collection i Offline Data Processing k
[FuIIyB?np;irr;ized }» NCU Profiling ";. *[Profile CoalesceHTree ConstluctonH Ogt&?ggsggn]
A /
! L
DrGPU utilizes NCU(NVIDIA Nsight DrGPU gives optimization suggestions
Compute) to profile GPU applications based on collected hardware

with customized GPU hardware counter counters.
list

NC STATE UNIVERSITY

An example of Analysis Trees

No-issue cycles

97.81% >
Util/SOL: 48.54%(SM)
Issue IPC: 0.09
a— T~
Dn?:%/:;eaa:s:;e Delay due to instructioﬂ M . t ”
: dependency dain stall reasons
0, =
95-50% ef nodssue 3.92% of no-issue cycleﬂ
cycles
I
=
7~ Max active warps: 32 / \
Theoretical active warps: 8
Achieved active warps: 7.98 FP64 integer
Register per thread: 254 62% of all inst 14% of all inst
Block size: 256
Limited by : Register, l
_ Blocksize)
i VAN OO 7= 1 (0 L 01810411018 (OB = | 7 Y
C A4 } version to minimize the stalls. .. , ,
Try to reduce block size to Note: There may be an accuracy Opt| mization Suggest|ons
128 to increase active warps. loss.
chemistry_file.H:
2425 logFcent = log10(15.90%

— >
2490 qr[1] *= Corr * k_f / (exp(-g_RTI[5] - g_RTI[5] + g_RT[7]) * refC);
9.71%

NC STATE UNIVERSITY

Evaluation Platforms

. GPU
- V100 16GB
- GTX 1650 4GB
- Applications
-~ Rodinia benchmarks
- YOLOvV4 (Darknet
— LULESHZ2
- PeleC
-~ Castro

Application Kernel State Optimization
bfs Kernel Long Scoreboard Loop unrolling
heartwall kernel Wait Loop unrolling
huffman vlc_encode_kernel_smé4huff Barriers Restruct code
kmeans kmeansPoint Wait Loop unrolling
Wait/
lud lud_diagonal Short Scoreboard/ Restruct code
No instruction
voevie solver 2 Short Scoreboard Function spliting
yocy] = Math Pipe Throttle Add use_fast_math
Backprop bpnn_layerforward CUDA Barr'%er Remove unnecessary barriers
Wait Restruct code
ifaa findRangeK Long Scoxreboard Restruct codé
Barrier Reduce blocksize
R« i iate FP ti
hotspot calculate._temp i emove inappropriate FP convertion
Add use_fast_math
lavaMD kernel_gpu_cuda Long Scorebf)ard/Walt LoopAunrolhng i
Wait Replace speical FP functions
nw needle_cuda_shared_1 Barriers Remove unneceﬁsary barriers
Replace syncthreads with sync warp safely
e - Short Scoreboard Loop unrolhn‘g
Barrier Reduce blocksize
pathfinder dynprotketnel Short Scofeboard Replace shared memory v&}/ith V.ariables
Wait Remove unnecessary iterations
Darknet im2col_gpu_kernel_ext Wait Loop unrolling
ApplyMaterialProperties ;
LULESH2 AndUpdateVolume._kernel Wait Add use_fast_math
Pelec teact State Long Scoreboard Increase occupancy
Wait Replace speical FP functions
Castro trace_ppm long scoreboard Increase occupancy

NC STATE UNIVERSITY

Speedups with Optimization Guided by DrGPU

B GTX1650 M V100
2.50x 5.84x 2 56X

2.00x

1.58X on GTX 1650
1.50x 1.36X on V100

1.00x

0.50x

0.00x
© N & @ QL @ LA IR QD> L E
N N AR AN RS X7 o9 8
%@* & & L& (\d@Q ¢ P &3P &L @ F
<

PeleC

[T=smesny - IPC:0.00 | Optimizations

. Set blocksize to 128.
[y P - Replace functions to their
faster version. e.g., log10 ->
e log10f (0.1% precision loss)

No-issue cycles

dependency
3.92% of no-issue cycles

/~ Max active warps: 32
Theoretical active warps: 8
Achieved active warps: 7.98
Register per thread: 254
Block size: 256

K

FP64
62% of all inst

Limited by : Register,

ry to change functions to their fas

\ Blocksize - A
[Ty 0 reduce biock size o [NZ‘ES?EJ%rEQLmSZeaTZEEZ"JZ'cy} 1.34X speedup on GTX 1650

128 to increase active warps. loss.
\

T | 1.36X speedup on V100

2425 logFcent = logl0(15.90%

2490 qr[1] *= Corr * k_f/ (exp(-g_RT[5] - g_RT[5] + g_RT[7]) * refC); ’r
9.71%

-/

A portion of the analysis tree on GTX 1650

NC STATE UNIVERSITY

YOLOv4

0
oD.Svhe #define CUDA_KERNEL_LOOP(i, n) \

Util/SOL: 60.29%(Dram)
9 Issue IPC: 1.98) for (int i = blockIdx.x * blockDim.x + threadIdx.x; \

4)

No-issue cycles

v i< (n);\
4 _) i += blockDim.x * gridDim.x)
Delay due to instruction
dependency 1 __global void im2col gpu kernel_ext(const int n, const float* data_im, const
21.12% of no-issue cycles

- J

integer memory control
78.80% of all inst 6.74% of all inst 4.59% of all inst

Try to restructure or unroll the
problematic codes to have enough

independent instructions hiding the stalls. O ptl m Izatl O N

imZCoI_kerneIs.cu: B - ° LOO p u n r0| I | ng

R O 1.06X speedup on GTX 1650

A portion of the analysis Tree on GTX 1650

adIdx.x; index < n;

4+ 1ndex = i % idDi
5 - CUDA_KERNEL_LOOP(index, n) { I
0 Tor (1Nt 1 = 0, 1 ReTer N

7 for (int j = 0; j < kernel_w; ++j) {

T‘

NC STATE UNIVERSITY

Conclusions

We propose DrGPU, a novel top-down profiler for GPU kernels.

> DrGPU quantifies stall cycles and decomposes them according to
various hardware events for root causes.

> DrGPU generates performance analysis trees including source code
location, root causes, and actionable guidance

> We optimized a number of applications with the insights provided by
DrGPU with nontrivial speedups on both desktop and Summit NVIDIA
GPUs

> Some of optimization suggestions proposed by DrGPU have been
integrated to NVIDIA Nsight Compute

Code is available at: https://github.com/FindHao/drgpu

NC STATE UNIVERSITY

Thanks!

