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GPUs are Broadly Used for Acceleration
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https://blogs.nvidia.com/blog/2021/06/25/industrial-hpc-revolution/
https://hexus.net/business/news/legal/102244-intels-nvidia-gpu-licensing-deal-ends-next-month/
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GPU Programming

// Kernel definition
__global  void VecAdd(float* A, float* B, float* C)
{
int i = threadIdx.x; — GPU Kernel
C[i] = A[i] + B[i];
}

int main()

{

# of GPU threads
// Kernel invocation with N threads
N = 1624 > 1 warp = 32 threads

VecAdd<<<1l, N>>>(A, B, C);
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Existing GPU Performance Tools
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NVIDIA Nsight Compute HPCToolkit
Existing tools apply high-level hotspot analysis
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DrGPU Contribution
DrGPU

> tells you where GPUs waste on stalling by a top-down tree

> provides analysis and optimization guidance for non-experts
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What are Bottlenecks of GPU?
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What are Bottlenecks of GPU?

- IPC of GPU kernel react_state in PeleC
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Categories of Stall Reasons

No-issue cycles
Unit with highest util/SOL
Issue IPC

—_—

// —
o g s / >
Device Memory Stalls Synchronization Instruction Related Stalls Shared Memory Other Stalls
: St s ) Related Stalls Delay due to dispatch stall
Delay due to device — Delay due to pending
memory accesses SUAER Y el global stores before exit Delay due to shared memory Delay due to constant
el e Eaes cache accesses
Delay in issuing devic — Delay due to instruction —— .
memory loads Threads waltlr!g for dependency Delay in issuing shared No Instructions
memory barriers memory accesses T e
Delay due to pipe elay ule to branc
contention 2o el
|
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Instruction Related Stalls

Instruction Related Stalls

Delay due to pending

Delay due to instruction| Delay due to pipe
global stores before exit

dependency contention

\ v v
global __ kernelA(){ __global__ kernelB(){ global___ kernelC(){

arrayAfthread_id] += 10 ¢ = log10(a) for (Tt | : 0, i<1000,i++){
} f=c+e c=a*b
f=c*e
} }
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DrGPU Overview

Online Data Collection i Offline Data Processing k
[ FuIIyB?np;irr;ized }» NCU Profiling ";. *[Profile CoalesceHTree ConstluctonH Ogt&?ggsggn ]
A /
! L
DrGPU utilizes NCU(NVIDIA Nsight DrGPU gives optimization suggestions
Compute) to profile GPU applications based on collected hardware

with customized GPU hardware counter counters.
list
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An example of Analysis Trees

No-issue cycles

97.81% >
Util/SOL: 48.54%(SM)
Issue IPC: 0.09
a— T~
Dn?:%/:;eaa:s:;e Delay due to instructioﬂ M . t ”
: dependency dain stall reasons
0, =
95-50% ef nodssue 3.92% of no-issue cycleﬂ
cycles
I
=
7~ Max active warps: 32 / \
Theoretical active warps: 8
Achieved active warps: 7.98 FP64 integer
Register per thread: 254 62% of all inst 14% of all inst
Block size: 256
Limited by : Register, l
\_ Blocksize )
i VAN OO 7= 1 (0 L 01810411018 (OB = | 7 Y
C A4 } version to minimize the stalls. .. , ,
Try to reduce block size to Note: There may be an accuracy Opt| mization Suggest|ons
128 to increase active warps. loss.
chemistry_file.H:
2425 logFcent = log10( 15.90%

— >
2490 qr[1] *= Corr * k_f / (exp(-g_RTI[5] - g_RTI[5] + g_RT[7]) * refC);
9.71%
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Evaluation Platforms

. GPU
- V100 16GB
- GTX 1650 4GB
- Applications
-~ Rodinia benchmarks
- YOLOvV4 (Darknet
— LULESHZ2
- PeleC
-~ Castro

Application Kernel State Optimization
bfs Kernel Long Scoreboard Loop unrolling
heartwall kernel Wait Loop unrolling
huffman vlc_encode_kernel_smé4huff Barriers Restruct code
kmeans kmeansPoint Wait Loop unrolling
Wait/
lud lud_diagonal Short Scoreboard/ Restruct code
No instruction
voevie solver 2 Short Scoreboard Function spliting
yocy] = Math Pipe Throttle Add use_fast_math
Backprop bpnn_layerforward CUDA Barr'%er Remove unnecessary barriers
Wait Restruct code
ifaa findRangeK Long Scoxreboard Restruct codé
Barrier Reduce blocksize
R« i iate FP ti
hotspot calculate._temp i emove inappropriate FP convertion
Add use_fast_math
lavaMD kernel_gpu_cuda Long Scorebf)ard/Walt LoopAunrolhng i
Wait Replace speical FP functions
nw needle_cuda_shared_1 Barriers Remove unneceﬁsary barriers
Replace syncthreads with sync warp safely
e - Short Scoreboard Loop unrolhn‘g
Barrier Reduce blocksize
pathfinder dynprotketnel Short Scofeboard Replace shared memory v&}/ith V.ariables
Wait Remove unnecessary iterations
Darknet im2col_gpu_kernel_ext Wait Loop unrolling
ApplyMaterialProperties ;
LULESH2 AndUpdateVolume._kernel Wait Add use_fast_math
Pelec teact State Long Scoreboard Increase occupancy
Wait Replace speical FP functions
Castro trace_ppm long scoreboard Increase occupancy
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Speedups with Optimization Guided by DrGPU
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PeleC

[T=smesny - IPC:0.00 | Optimizations

. Set blocksize to 128.
[ y P - Replace functions to their
faster version. e.g., log10 ->
e log10f (0.1% precision loss)

No-issue cycles

dependency
3.92% of no-issue cycles

/~ Max active warps: 32
Theoretical active warps: 8
Achieved active warps: 7.98
Register per thread: 254
Block size: 256

K

FP64
62% of all inst

Limited by : Register,

ry to change functions to their fas

\ Blocksize - A
[ Ty 0 reduce biock size o [NZ‘ES?EJ%rEQLmSZeaTZEEZ"JZ'cy} 1.34X speedup on GTX 1650

128 to increase active warps. loss.
\

T | 1.36X speedup on V100

2425 logFcent = logl0( 15.90%

2490 qr[1] *= Corr * k_f/ (exp(-g_RT[5] - g_RT[5] + g_RT[7]) * refC); ’r
9.71%

-/

A portion of the analysis tree on GTX 1650
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YOLOv4

0
oD.Svhe #define CUDA_KERNEL_LOOP(i, n) \

Util/SOL: 60.29%(Dram)
9 Issue IPC: 1.98 ) for (int i = blockIdx.x * blockDim.x + threadIdx.x; \

4 )

No-issue cycles

v i< (n);\
4 _ ) i += blockDim.x * gridDim.x)
Delay due to instruction
dependency 1 __global void im2col gpu kernel_ext(const int n, const float* data_im, const
21.12% of no-issue cycles

- J

integer memory control
78.80% of all inst 6.74% of all inst 4.59% of all inst

Try to restructure or unroll the
problematic codes to have enough

independent instructions hiding the stalls. O ptl m Izatl O N

imZCoI_kerneIs.cu: B - ° LOO p u n r0| I | ng

R O 1.06X speedup on GTX 1650

A portion of the analysis Tree on GTX 1650

adIdx.x; index < n;

4+ 1ndex = i % idDi
5 -  CUDA_KERNEL_LOOP(index, n) { I
0 Tor (1Nt 1 = 0, 1 ReTer N

7 for (int j = 0; j < kernel_w; ++j) {

T‘




NC STATE UNIVERSITY

Conclusions

We propose DrGPU, a novel top-down profiler for GPU kernels.

> DrGPU quantifies stall cycles and decomposes them according to
various hardware events for root causes.

> DrGPU generates performance analysis trees including source code
location, root causes, and actionable guidance

> We optimized a number of applications with the insights provided by
DrGPU with nontrivial speedups on both desktop and Summit NVIDIA
GPUs

> Some of optimization suggestions proposed by DrGPU have been
integrated to NVIDIA Nsight Compute

Code is available at: https://github.com/FindHao/drgpu
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Thanks!



